Matches in SemOpenAlex for { <https://semopenalex.org/work/W2969457570> ?p ?o ?g. }
- W2969457570 abstract "Blood-based methods using cell-free DNA (cfDNA) are under development as an alternative to existing screening tests. However, early-stage detection of cancer using tumor-derived cfDNA has proven challenging because of the small proportion of cfDNA derived from tumor tissue in early-stage disease. A machine learning approach to discover signatures in cfDNA, potentially reflective of both tumor and non-tumor contributions, may represent a promising direction for the early detection of cancer. Whole-genome sequencing was performed on cfDNA extracted from plasma samples (N = 546 colorectal cancer and 271 non-cancer controls). Reads aligning to protein-coding gene bodies were extracted, and read counts were normalized. cfDNA tumor fraction was estimated using IchorCNA. Machine learning models were trained using k-fold cross-validation and confounder-based cross-validations to assess generalization performance. In a colorectal cancer cohort heavily weighted towards early-stage cancer (80% stage I/II), we achieved a mean AUC of 0.92 (95% CI 0.91–0.93) with a mean sensitivity of 85% (95% CI 83–86%) at 85% specificity. Sensitivity generally increased with tumor stage and increasing tumor fraction. Stratification by age, sequencing batch, and institution demonstrated the impact of these confounders and provided a more accurate assessment of generalization performance. A machine learning approach using cfDNA achieved high sensitivity and specificity in a large, predominantly early-stage, colorectal cancer cohort. The possibility of systematic technical and institution-specific biases warrants similar confounder analyses in other studies. Prospective validation of this machine learning method and evaluation of a multi-analyte approach are underway." @default.
- W2969457570 created "2019-08-29" @default.
- W2969457570 creator A5002619991 @default.
- W2969457570 creator A5003033508 @default.
- W2969457570 creator A5003263155 @default.
- W2969457570 creator A5017243422 @default.
- W2969457570 creator A5018966004 @default.
- W2969457570 creator A5021696134 @default.
- W2969457570 creator A5022369286 @default.
- W2969457570 creator A5028621487 @default.
- W2969457570 creator A5037819167 @default.
- W2969457570 creator A5043827429 @default.
- W2969457570 creator A5047479274 @default.
- W2969457570 creator A5050897400 @default.
- W2969457570 creator A5051340752 @default.
- W2969457570 creator A5053893712 @default.
- W2969457570 creator A5055144229 @default.
- W2969457570 creator A5056022658 @default.
- W2969457570 creator A5056208304 @default.
- W2969457570 creator A5057621816 @default.
- W2969457570 creator A5061362236 @default.
- W2969457570 creator A5064182038 @default.
- W2969457570 creator A5067992114 @default.
- W2969457570 creator A5069111540 @default.
- W2969457570 creator A5069347531 @default.
- W2969457570 creator A5070366544 @default.
- W2969457570 creator A5071373715 @default.
- W2969457570 creator A5079674922 @default.
- W2969457570 creator A5080640284 @default.
- W2969457570 creator A5081437292 @default.
- W2969457570 creator A5087044001 @default.
- W2969457570 creator A5087758198 @default.
- W2969457570 date "2019-08-23" @default.
- W2969457570 modified "2023-10-10" @default.
- W2969457570 title "Machine learning enables detection of early-stage colorectal cancer by whole-genome sequencing of plasma cell-free DNA" @default.
- W2969457570 cites W1480357432 @default.
- W2969457570 cites W1499358940 @default.
- W2969457570 cites W1941739197 @default.
- W2969457570 cites W1983466841 @default.
- W2969457570 cites W1991581123 @default.
- W2969457570 cites W2006090902 @default.
- W2969457570 cites W2024081693 @default.
- W2969457570 cites W2035202016 @default.
- W2969457570 cites W2077922582 @default.
- W2969457570 cites W2089470652 @default.
- W2969457570 cites W2096192437 @default.
- W2969457570 cites W2103734061 @default.
- W2969457570 cites W2132145712 @default.
- W2969457570 cites W2147464891 @default.
- W2969457570 cites W2157820287 @default.
- W2969457570 cites W2171237493 @default.
- W2969457570 cites W2239118478 @default.
- W2969457570 cites W2342569126 @default.
- W2969457570 cites W2517348684 @default.
- W2969457570 cites W2586862787 @default.
- W2969457570 cites W2590954301 @default.
- W2969457570 cites W2602657459 @default.
- W2969457570 cites W2603756957 @default.
- W2969457570 cites W2620090428 @default.
- W2969457570 cites W2747939174 @default.
- W2969457570 cites W2763620027 @default.
- W2969457570 cites W2765435739 @default.
- W2969457570 cites W2781525129 @default.
- W2969457570 cites W2783674487 @default.
- W2969457570 cites W2785108200 @default.
- W2969457570 cites W2889768576 @default.
- W2969457570 cites W2898215009 @default.
- W2969457570 cites W2899063215 @default.
- W2969457570 cites W2899540665 @default.
- W2969457570 doi "https://doi.org/10.1186/s12885-019-6003-8" @default.
- W2969457570 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6708173" @default.
- W2969457570 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31443703" @default.
- W2969457570 hasPublicationYear "2019" @default.
- W2969457570 type Work @default.
- W2969457570 sameAs 2969457570 @default.
- W2969457570 citedByCount "94" @default.
- W2969457570 countsByYear W29694575702019 @default.
- W2969457570 countsByYear W29694575702020 @default.
- W2969457570 countsByYear W29694575702021 @default.
- W2969457570 countsByYear W29694575702022 @default.
- W2969457570 countsByYear W29694575702023 @default.
- W2969457570 crossrefType "journal-article" @default.
- W2969457570 hasAuthorship W2969457570A5002619991 @default.
- W2969457570 hasAuthorship W2969457570A5003033508 @default.
- W2969457570 hasAuthorship W2969457570A5003263155 @default.
- W2969457570 hasAuthorship W2969457570A5017243422 @default.
- W2969457570 hasAuthorship W2969457570A5018966004 @default.
- W2969457570 hasAuthorship W2969457570A5021696134 @default.
- W2969457570 hasAuthorship W2969457570A5022369286 @default.
- W2969457570 hasAuthorship W2969457570A5028621487 @default.
- W2969457570 hasAuthorship W2969457570A5037819167 @default.
- W2969457570 hasAuthorship W2969457570A5043827429 @default.
- W2969457570 hasAuthorship W2969457570A5047479274 @default.
- W2969457570 hasAuthorship W2969457570A5050897400 @default.
- W2969457570 hasAuthorship W2969457570A5051340752 @default.
- W2969457570 hasAuthorship W2969457570A5053893712 @default.
- W2969457570 hasAuthorship W2969457570A5055144229 @default.
- W2969457570 hasAuthorship W2969457570A5056022658 @default.
- W2969457570 hasAuthorship W2969457570A5056208304 @default.
- W2969457570 hasAuthorship W2969457570A5057621816 @default.