Matches in SemOpenAlex for { <https://semopenalex.org/work/W2969476989> ?p ?o ?g. }
- W2969476989 endingPage "137500" @default.
- W2969476989 startingPage "137500" @default.
- W2969476989 abstract "A strong resurgence of interest in vdW solid processing has accompanied two-dimensional (2D) materials research in the past decade. `Two dimensional` is terminology generally reserved for solids comprised of 5 molecular layers or less. As materials approach this ultimate thickness limit, unique properties emerge. vdW solids are well-suited for 2D materials research and applications as the anisotropic weak inter-layer bonding facilitates separation of bulk crystals into molecular constituents. Despite the great effort fueling the 2D materials revolution, electronics and other devices that truly capitalize on the benefits afforded by 2D van der Waals materials are not yet commercially available. The widespread use of 2D vdW solids is primarily inhibited by the lack of reliable, large-area synthesis approaches. Chemical vapor deposition is the primary means by which large area 2D TMD films are grown. This approach, however, has serious shortcomings, such as a lack of repeatable growth rates and kinetics, as well as the requirement for high processing temperatures (typically >650 °C). Physical vapor deposition (PVD) constitutes a family of synthesis processes with inherent qualities enabling large-scale 2D vdW materials processing. With no fundamental limitations on size, uniformity over large areas (>1 m2) for diverse materials, PVD has been demonstrated on thicker vdW films for decades. PVD processes are often characterized by the presence of energetic particles with kinetic energies that serve as an additional knob, along with process temperature and pressure, for control of growth kinetics. Ideally, a process would enable utilization of functional and mechanical properties of 2D vdW solids via synthesis directly on flexible polymer substrates at suitable temperatures. This objective is straightforward with PVD-based approaches. Here we review PVD techniques applied to the best-known vdW solids including graphene, transition metal dichalcogenides (such as MoS2), and boron nitride. Key points from decades of prior studies are summarized with the objective of applying this knowledge to hasten process development for future applications of large-area 2D vdW solids in advanced optical and electronic device applications meeting the needs of humankind beyond our current capabilities." @default.
- W2969476989 created "2019-08-29" @default.
- W2969476989 creator A5002618408 @default.
- W2969476989 creator A5016621767 @default.
- W2969476989 creator A5044388112 @default.
- W2969476989 date "2019-10-01" @default.
- W2969476989 modified "2023-10-06" @default.
- W2969476989 title "Physical vapor deposition of 2D Van der Waals materials: a review" @default.
- W2969476989 cites W1019735109 @default.
- W2969476989 cites W1554513334 @default.
- W2969476989 cites W1621048310 @default.
- W2969476989 cites W1626800832 @default.
- W2969476989 cites W1651570626 @default.
- W2969476989 cites W1964642922 @default.
- W2969476989 cites W1972488877 @default.
- W2969476989 cites W1972963407 @default.
- W2969476989 cites W1973204637 @default.
- W2969476989 cites W1976730710 @default.
- W2969476989 cites W1979058166 @default.
- W2969476989 cites W1980412805 @default.
- W2969476989 cites W1981966175 @default.
- W2969476989 cites W1984206498 @default.
- W2969476989 cites W1987770905 @default.
- W2969476989 cites W1991859775 @default.
- W2969476989 cites W1992334329 @default.
- W2969476989 cites W2002623757 @default.
- W2969476989 cites W2012587360 @default.
- W2969476989 cites W2017507680 @default.
- W2969476989 cites W2017871657 @default.
- W2969476989 cites W2026237155 @default.
- W2969476989 cites W2029252287 @default.
- W2969476989 cites W2030935559 @default.
- W2969476989 cites W2034981015 @default.
- W2969476989 cites W2042284106 @default.
- W2969476989 cites W2051357680 @default.
- W2969476989 cites W2058122340 @default.
- W2969476989 cites W2061197245 @default.
- W2969476989 cites W2061562164 @default.
- W2969476989 cites W2061754984 @default.
- W2969476989 cites W2065308677 @default.
- W2969476989 cites W2069419757 @default.
- W2969476989 cites W2072312985 @default.
- W2969476989 cites W2077895277 @default.
- W2969476989 cites W2080127612 @default.
- W2969476989 cites W2081170161 @default.
- W2969476989 cites W2088034301 @default.
- W2969476989 cites W2094789248 @default.
- W2969476989 cites W2096421416 @default.
- W2969476989 cites W2105231738 @default.
- W2969476989 cites W2115951442 @default.
- W2969476989 cites W2138244722 @default.
- W2969476989 cites W2144429427 @default.
- W2969476989 cites W2149217979 @default.
- W2969476989 cites W2165986429 @default.
- W2969476989 cites W2170589179 @default.
- W2969476989 cites W2225701763 @default.
- W2969476989 cites W2305946569 @default.
- W2969476989 cites W2307933751 @default.
- W2969476989 cites W2318656318 @default.
- W2969476989 cites W2323469764 @default.
- W2969476989 cites W2328616503 @default.
- W2969476989 cites W2330096141 @default.
- W2969476989 cites W2344994048 @default.
- W2969476989 cites W2395367981 @default.
- W2969476989 cites W2413194114 @default.
- W2969476989 cites W2508045233 @default.
- W2969476989 cites W2570166109 @default.
- W2969476989 cites W2580655056 @default.
- W2969476989 cites W2733216924 @default.
- W2969476989 cites W2753109295 @default.
- W2969476989 cites W2753312755 @default.
- W2969476989 cites W2761614910 @default.
- W2969476989 cites W2765787651 @default.
- W2969476989 cites W2773668590 @default.
- W2969476989 cites W2777821566 @default.
- W2969476989 cites W2802398494 @default.
- W2969476989 cites W2806808063 @default.
- W2969476989 cites W2887818574 @default.
- W2969476989 cites W2898341701 @default.
- W2969476989 cites W2899515500 @default.
- W2969476989 cites W2899724951 @default.
- W2969476989 doi "https://doi.org/10.1016/j.tsf.2019.137500" @default.
- W2969476989 hasPublicationYear "2019" @default.
- W2969476989 type Work @default.
- W2969476989 sameAs 2969476989 @default.
- W2969476989 citedByCount "58" @default.
- W2969476989 countsByYear W29694769892020 @default.
- W2969476989 countsByYear W29694769892021 @default.
- W2969476989 countsByYear W29694769892022 @default.
- W2969476989 countsByYear W29694769892023 @default.
- W2969476989 crossrefType "journal-article" @default.
- W2969476989 hasAuthorship W2969476989A5002618408 @default.
- W2969476989 hasAuthorship W2969476989A5016621767 @default.
- W2969476989 hasAuthorship W2969476989A5044388112 @default.
- W2969476989 hasConcept C126061179 @default.
- W2969476989 hasConcept C141055242 @default.
- W2969476989 hasConcept C151730666 @default.
- W2969476989 hasConcept C159467904 @default.