Matches in SemOpenAlex for { <https://semopenalex.org/work/W2969477304> ?p ?o ?g. }
- W2969477304 abstract "The problem of computing spectra of operators is arguably one of the most investigated areas of computational mathematics. Recent progress and the current paper reveal that, unlike the finite-dimensional case, infinite-dimensional problems yield a highly intricate infinite classification theory determining which spectral problems can be solved and with which type of algorithms. Classifying spectral problems and providing optimal algorithms is uncharted territory in the foundations of computational mathematics. This paper is the first of a two-part series establishing the foundations of computational spectral theory through the Solvability Complexity Index (SCI) hierarchy and has three purposes. First, we establish answers to many longstanding open questions on the existence of algorithms. We show that for large classes of partial differential operators on unbounded domains, spectra can be computed with error control from point sampling operator coefficients. Further results include computing spectra of operators on graphs with error control, the spectral gap problem, spectral classifications, and discrete spectra, multiplicities and eigenspaces. Second, these classifications determine which types of problems can be used in computer-assisted proofs. The theory for this is virtually non-existent, and we provide some of the first results in this infinite classification theory. Third, our proofs are constructive, yielding a library of new algorithms and techniques that handle problems that before were out of reach. We show several examples on contemporary problems in the physical sciences. Our approach is closely related to Smale's program on the foundations of computational mathematics initiated in the 1980s, as many spectral problems can only be computed via several limits, a phenomenon shared with the foundations of polynomial root finding with rational maps, as proved by McMullen." @default.
- W2969477304 created "2019-08-29" @default.
- W2969477304 creator A5017220106 @default.
- W2969477304 creator A5082589336 @default.
- W2969477304 date "2019-08-26" @default.
- W2969477304 modified "2023-09-27" @default.
- W2969477304 title "The foundations of spectral computations via the Solvability Complexity Index hierarchy: Part II" @default.
- W2969477304 cites W1489075484 @default.
- W2969477304 cites W1515678755 @default.
- W2969477304 cites W1522304162 @default.
- W2969477304 cites W1538219305 @default.
- W2969477304 cites W1539593706 @default.
- W2969477304 cites W1550150926 @default.
- W2969477304 cites W1550331971 @default.
- W2969477304 cites W1562265198 @default.
- W2969477304 cites W1575570794 @default.
- W2969477304 cites W1588125963 @default.
- W2969477304 cites W1592457332 @default.
- W2969477304 cites W1592958377 @default.
- W2969477304 cites W1695477354 @default.
- W2969477304 cites W1718611134 @default.
- W2969477304 cites W1754516725 @default.
- W2969477304 cites W1769077952 @default.
- W2969477304 cites W1819271434 @default.
- W2969477304 cites W1825294361 @default.
- W2969477304 cites W191684985 @default.
- W2969477304 cites W1965005863 @default.
- W2969477304 cites W1965944977 @default.
- W2969477304 cites W1966680374 @default.
- W2969477304 cites W1966725979 @default.
- W2969477304 cites W1968446912 @default.
- W2969477304 cites W1968614459 @default.
- W2969477304 cites W1968798405 @default.
- W2969477304 cites W1970152057 @default.
- W2969477304 cites W1971989263 @default.
- W2969477304 cites W1972583857 @default.
- W2969477304 cites W1973517494 @default.
- W2969477304 cites W1975471784 @default.
- W2969477304 cites W1975519439 @default.
- W2969477304 cites W1975572848 @default.
- W2969477304 cites W1977183350 @default.
- W2969477304 cites W1979495273 @default.
- W2969477304 cites W1982669303 @default.
- W2969477304 cites W1984479245 @default.
- W2969477304 cites W1985529277 @default.
- W2969477304 cites W1987068947 @default.
- W2969477304 cites W1988619801 @default.
- W2969477304 cites W1988742704 @default.
- W2969477304 cites W1988929581 @default.
- W2969477304 cites W1989138630 @default.
- W2969477304 cites W1989905409 @default.
- W2969477304 cites W1990533860 @default.
- W2969477304 cites W1993460539 @default.
- W2969477304 cites W1995393333 @default.
- W2969477304 cites W1995477602 @default.
- W2969477304 cites W1998169277 @default.
- W2969477304 cites W1999692358 @default.
- W2969477304 cites W2001843883 @default.
- W2969477304 cites W2003453778 @default.
- W2969477304 cites W2004359964 @default.
- W2969477304 cites W2008050381 @default.
- W2969477304 cites W2008736393 @default.
- W2969477304 cites W2008942408 @default.
- W2969477304 cites W2011020276 @default.
- W2969477304 cites W2012061418 @default.
- W2969477304 cites W2015206873 @default.
- W2969477304 cites W2016119108 @default.
- W2969477304 cites W2016686891 @default.
- W2969477304 cites W2018001888 @default.
- W2969477304 cites W2018612292 @default.
- W2969477304 cites W2019191289 @default.
- W2969477304 cites W2019773267 @default.
- W2969477304 cites W2021104790 @default.
- W2969477304 cites W2022708042 @default.
- W2969477304 cites W2024076708 @default.
- W2969477304 cites W202431468 @default.
- W2969477304 cites W2024720212 @default.
- W2969477304 cites W2026341320 @default.
- W2969477304 cites W2026350095 @default.
- W2969477304 cites W2026462040 @default.
- W2969477304 cites W2027274501 @default.
- W2969477304 cites W2028501501 @default.
- W2969477304 cites W2029151220 @default.
- W2969477304 cites W2031654810 @default.
- W2969477304 cites W2032121576 @default.
- W2969477304 cites W2034617673 @default.
- W2969477304 cites W2036068788 @default.
- W2969477304 cites W2036196591 @default.
- W2969477304 cites W2038769161 @default.
- W2969477304 cites W2040246371 @default.
- W2969477304 cites W2041614818 @default.
- W2969477304 cites W2043419861 @default.
- W2969477304 cites W2046442228 @default.
- W2969477304 cites W2048258159 @default.
- W2969477304 cites W2048323184 @default.
- W2969477304 cites W2049632862 @default.
- W2969477304 cites W2049955574 @default.
- W2969477304 cites W2052645364 @default.
- W2969477304 cites W2054451762 @default.
- W2969477304 cites W2054926994 @default.