Matches in SemOpenAlex for { <https://semopenalex.org/work/W2969485067> ?p ?o ?g. }
- W2969485067 endingPage "451" @default.
- W2969485067 startingPage "441" @default.
- W2969485067 abstract "Abstract Oxygenated polycyclic aromatic hydrocarbons (OPAH) have received increasing attention due to their toxic effect on human health. This study comprehensively investigates the evolution of OPAH chemistry at flame temperatures. Jet-stirred reactor (JSR) experiments with benzene/phenol/C2H2/N2 and benzene/C2H2/O2/N2 revealed that OPAH with oxygenated heterocycle can be formed by the addition of C2H2 at 1400 K. To further clarify the evolution of OPAH chemistry in soot systems, OPAH formation and decomposition reaction pathways and kinetic parameters have been theoretically investigated. The potential energy surfaces of 1-naphtholate and 2-naphtholate growth, and thermal decomposition reactions, were calculated by combining the density functional theory B3LYP/6–311+G(d,p) and CCSD(T)/cc-pvdz methods. The reaction rate coefficients in the temperature range of 800–2500 K and pressure range of 0.1–100 atm were calculated using RRKM theory by solving the master equations. The potential energy surface of C2H2+1-naphtholate and C2H2+2-naphtholate growth reactions showed that the O atom could be locked in a naphthofuran molecule with the formation of a C O C oxygenated heterocycle; and the reaction rates were determined by adding the C2H2 elementary step with the energy barrier of 26.0 and 19.9 kcal/mol, respectively. Thermal decomposition reactions of 1-naphtholate and 2-naphtholate yielded an indenyl radical and CO. The thermal decomposition reaction rates were significantly sensitive to the zig-zag site structure next to the C O bond. The decomposition rate of 1-naphtholate at 1500 K, with a zig-zag site near the C O bond, was 14.8 times lower than that of 2-naphtholate with no zig-zag site near the C O bond. Rate comparison results indicate that the C O functional group rapidly converts to a C O C functional group with the addition of C2H2. The formation, growth and thermal decomposition reactions of 1-naphtholate and 2-naphtholate were added to a detailed PAH mechanism to check the effect of OPAH reactions on PAH formation chemistry. The concentration profile of naphthalene predicted by the updated PAH mechanism was lower than current PAH mechanism predictions by 29%, indicating that the OPAH reactions had a significant effect on PAH formation chemistry, and should be included in the PAH mechanism. However, due to the relatively low concentration of OPAH compared to PAH, it is possible to ignore the correlation between OPAH and soot nucleation at flame temperatures; therefore an OPAH evolution pathway (PAH → incipient soot → OPAH formation on soot particle → selective thermal decomposition of OPAH), is proposed to explain the high content of OPAH molecules (e.g., 9,10-anthraquinone, benz(a)anthracene-7,12-dione, and benzanthrone) adsorbed on the soot particle." @default.
- W2969485067 created "2019-08-29" @default.
- W2969485067 creator A5005332754 @default.
- W2969485067 creator A5034657203 @default.
- W2969485067 creator A5046092151 @default.
- W2969485067 creator A5052935575 @default.
- W2969485067 creator A5054839125 @default.
- W2969485067 creator A5054978407 @default.
- W2969485067 creator A5067178890 @default.
- W2969485067 date "2019-11-01" @default.
- W2969485067 modified "2023-09-29" @default.
- W2969485067 title "Evolution of oxygenated polycyclic aromatic hydrocarbon chemistry at flame temperatures" @default.
- W2969485067 cites W1900867778 @default.
- W2969485067 cites W1966281189 @default.
- W2969485067 cites W1967834823 @default.
- W2969485067 cites W1977613490 @default.
- W2969485067 cites W1981349960 @default.
- W2969485067 cites W1981594383 @default.
- W2969485067 cites W1983154914 @default.
- W2969485067 cites W1993477412 @default.
- W2969485067 cites W1995223159 @default.
- W2969485067 cites W1995938712 @default.
- W2969485067 cites W2017129868 @default.
- W2969485067 cites W2020010758 @default.
- W2969485067 cites W2021140445 @default.
- W2969485067 cites W2024747980 @default.
- W2969485067 cites W2034914923 @default.
- W2969485067 cites W2044640063 @default.
- W2969485067 cites W2045233427 @default.
- W2969485067 cites W2052208539 @default.
- W2969485067 cites W2052588770 @default.
- W2969485067 cites W2054479251 @default.
- W2969485067 cites W2055763622 @default.
- W2969485067 cites W2060809271 @default.
- W2969485067 cites W2071967117 @default.
- W2969485067 cites W2082480147 @default.
- W2969485067 cites W2089253268 @default.
- W2969485067 cites W2089256328 @default.
- W2969485067 cites W2090008350 @default.
- W2969485067 cites W2137430897 @default.
- W2969485067 cites W2141809233 @default.
- W2969485067 cites W2156902602 @default.
- W2969485067 cites W2159107979 @default.
- W2969485067 cites W2173285679 @default.
- W2969485067 cites W2179616098 @default.
- W2969485067 cites W2226525282 @default.
- W2969485067 cites W2314257452 @default.
- W2969485067 cites W2321100977 @default.
- W2969485067 cites W2321310506 @default.
- W2969485067 cites W2330765081 @default.
- W2969485067 cites W2346490442 @default.
- W2969485067 cites W2395143570 @default.
- W2969485067 cites W2402841808 @default.
- W2969485067 cites W2421710065 @default.
- W2969485067 cites W2437421313 @default.
- W2969485067 cites W2463615915 @default.
- W2969485067 cites W2486319899 @default.
- W2969485067 cites W2517809490 @default.
- W2969485067 cites W2726594063 @default.
- W2969485067 cites W2753420337 @default.
- W2969485067 cites W2758948178 @default.
- W2969485067 cites W2761910953 @default.
- W2969485067 cites W2765984821 @default.
- W2969485067 cites W2768300483 @default.
- W2969485067 cites W2769839107 @default.
- W2969485067 cites W2784030062 @default.
- W2969485067 cites W2790274408 @default.
- W2969485067 cites W2800808171 @default.
- W2969485067 cites W2808645784 @default.
- W2969485067 cites W2810535486 @default.
- W2969485067 cites W2884781805 @default.
- W2969485067 cites W2893851221 @default.
- W2969485067 cites W2894967025 @default.
- W2969485067 cites W2898404558 @default.
- W2969485067 cites W2907382938 @default.
- W2969485067 cites W2913341441 @default.
- W2969485067 cites W2937411758 @default.
- W2969485067 cites W4246307251 @default.
- W2969485067 doi "https://doi.org/10.1016/j.combustflame.2019.08.018" @default.
- W2969485067 hasPublicationYear "2019" @default.
- W2969485067 type Work @default.
- W2969485067 sameAs 2969485067 @default.
- W2969485067 citedByCount "30" @default.
- W2969485067 countsByYear W29694850672019 @default.
- W2969485067 countsByYear W29694850672020 @default.
- W2969485067 countsByYear W29694850672021 @default.
- W2969485067 countsByYear W29694850672022 @default.
- W2969485067 countsByYear W29694850672023 @default.
- W2969485067 crossrefType "journal-article" @default.
- W2969485067 hasAuthorship W2969485067A5005332754 @default.
- W2969485067 hasAuthorship W2969485067A5034657203 @default.
- W2969485067 hasAuthorship W2969485067A5046092151 @default.
- W2969485067 hasAuthorship W2969485067A5052935575 @default.
- W2969485067 hasAuthorship W2969485067A5054839125 @default.
- W2969485067 hasAuthorship W2969485067A5054978407 @default.
- W2969485067 hasAuthorship W2969485067A5067178890 @default.
- W2969485067 hasConcept C107872376 @default.
- W2969485067 hasConcept C108285982 @default.