Matches in SemOpenAlex for { <https://semopenalex.org/work/W2969492067> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W2969492067 abstract "This paper addresses the problem of counting buildings in very high-resolution overhead true color imagery. We study and discuss the relevance of deep-learning based methods to this task. Two architectures and two loss functions are proposed and compared. We show that a model enforcing equivariance to rotations is beneficial for the task of counting in remotely sensed images. We also highlight the importance of robustness to outliers of the loss function when considering remote sensing applications." @default.
- W2969492067 created "2019-08-29" @default.
- W2969492067 creator A5005192117 @default.
- W2969492067 creator A5087677326 @default.
- W2969492067 date "2019-05-01" @default.
- W2969492067 modified "2023-09-27" @default.
- W2969492067 title "Deep Learning Models to Count Buildings in High-Resolution Overhead Images" @default.
- W2969492067 cites W2023012115 @default.
- W2969492067 cites W2046033161 @default.
- W2969492067 cites W2095537868 @default.
- W2969492067 cites W2194775991 @default.
- W2969492067 cites W2520723410 @default.
- W2969492067 cites W2569680626 @default.
- W2969492067 cites W2609402060 @default.
- W2969492067 cites W2729018917 @default.
- W2969492067 cites W2782522152 @default.
- W2969492067 cites W2793461576 @default.
- W2969492067 cites W2804962028 @default.
- W2969492067 cites W2814568980 @default.
- W2969492067 cites W2883929025 @default.
- W2969492067 cites W2886319627 @default.
- W2969492067 cites W2886397424 @default.
- W2969492067 cites W2886443245 @default.
- W2969492067 cites W2962921175 @default.
- W2969492067 cites W2963499661 @default.
- W2969492067 doi "https://doi.org/10.1109/jurse.2019.8809058" @default.
- W2969492067 hasPublicationYear "2019" @default.
- W2969492067 type Work @default.
- W2969492067 sameAs 2969492067 @default.
- W2969492067 citedByCount "4" @default.
- W2969492067 countsByYear W29694920672019 @default.
- W2969492067 countsByYear W29694920672020 @default.
- W2969492067 countsByYear W29694920672021 @default.
- W2969492067 crossrefType "proceedings-article" @default.
- W2969492067 hasAuthorship W2969492067A5005192117 @default.
- W2969492067 hasAuthorship W2969492067A5087677326 @default.
- W2969492067 hasConcept C108583219 @default.
- W2969492067 hasConcept C111919701 @default.
- W2969492067 hasConcept C138268822 @default.
- W2969492067 hasConcept C154945302 @default.
- W2969492067 hasConcept C2779960059 @default.
- W2969492067 hasConcept C31972630 @default.
- W2969492067 hasConcept C41008148 @default.
- W2969492067 hasConceptScore W2969492067C108583219 @default.
- W2969492067 hasConceptScore W2969492067C111919701 @default.
- W2969492067 hasConceptScore W2969492067C138268822 @default.
- W2969492067 hasConceptScore W2969492067C154945302 @default.
- W2969492067 hasConceptScore W2969492067C2779960059 @default.
- W2969492067 hasConceptScore W2969492067C31972630 @default.
- W2969492067 hasConceptScore W2969492067C41008148 @default.
- W2969492067 hasLocation W29694920671 @default.
- W2969492067 hasOpenAccess W2969492067 @default.
- W2969492067 hasPrimaryLocation W29694920671 @default.
- W2969492067 hasRelatedWork W1891287906 @default.
- W2969492067 hasRelatedWork W1969923398 @default.
- W2969492067 hasRelatedWork W2036807459 @default.
- W2969492067 hasRelatedWork W2229312674 @default.
- W2969492067 hasRelatedWork W2731899572 @default.
- W2969492067 hasRelatedWork W2755342338 @default.
- W2969492067 hasRelatedWork W2772917594 @default.
- W2969492067 hasRelatedWork W2939353110 @default.
- W2969492067 hasRelatedWork W3009238340 @default.
- W2969492067 hasRelatedWork W3215138031 @default.
- W2969492067 isParatext "false" @default.
- W2969492067 isRetracted "false" @default.
- W2969492067 magId "2969492067" @default.
- W2969492067 workType "article" @default.