Matches in SemOpenAlex for { <https://semopenalex.org/work/W2969523654> ?p ?o ?g. }
- W2969523654 endingPage "419" @default.
- W2969523654 startingPage "381" @default.
- W2969523654 abstract "Interior-point or barrier methods handle nonlinear programs by sequentially solving barrier subprograms with a decreasing sequence of barrier parameters. The specific barrier update rule strongly influences the theoretical convergence properties as well as the practical efficiency. While many global and local convergence analyses consider a monotone update that decreases the barrier parameter for every approximately solved subprogram, computational studies show a superior performance of more adaptive strategies. In this paper we interpret the adaptive barrier update as a reinforcement learning task. A deep Q-learning agent is trained by both imitation and random action selection. Numerical results based on an implementation within the nonlinear programming solver WORHP show that the agent successfully learns to steer the barrier parameter and additionally improves WORHP’s performance on the CUTEst test set." @default.
- W2969523654 created "2019-08-29" @default.
- W2969523654 creator A5078992848 @default.
- W2969523654 date "2019-12-01" @default.
- W2969523654 modified "2023-09-26" @default.
- W2969523654 title "Learning to steer nonlinear interior-point methods" @default.
- W2969523654 cites W1500073873 @default.
- W2969523654 cites W1508335918 @default.
- W2969523654 cites W1965391256 @default.
- W2969523654 cites W2035072927 @default.
- W2969523654 cites W2037490650 @default.
- W2969523654 cites W2055008743 @default.
- W2969523654 cites W2057565823 @default.
- W2969523654 cites W2069671092 @default.
- W2969523654 cites W2080514141 @default.
- W2969523654 cites W2083431695 @default.
- W2969523654 cites W2085400344 @default.
- W2969523654 cites W2086867325 @default.
- W2969523654 cites W2088422447 @default.
- W2969523654 cites W2101337987 @default.
- W2969523654 cites W2101485019 @default.
- W2969523654 cites W2123871098 @default.
- W2969523654 cites W2130632243 @default.
- W2969523654 cites W2147666917 @default.
- W2969523654 cites W2149454052 @default.
- W2969523654 cites W2168359464 @default.
- W2969523654 cites W2168405694 @default.
- W2969523654 cites W2563592268 @default.
- W2969523654 cites W2626188202 @default.
- W2969523654 cites W2778996617 @default.
- W2969523654 cites W2809162153 @default.
- W2969523654 cites W2953188364 @default.
- W2969523654 cites W32403112 @default.
- W2969523654 cites W4254106911 @default.
- W2969523654 doi "https://doi.org/10.1007/s13675-019-00118-4" @default.
- W2969523654 hasPublicationYear "2019" @default.
- W2969523654 type Work @default.
- W2969523654 sameAs 2969523654 @default.
- W2969523654 citedByCount "0" @default.
- W2969523654 crossrefType "journal-article" @default.
- W2969523654 hasAuthorship W2969523654A5078992848 @default.
- W2969523654 hasBestOaLocation W29695236541 @default.
- W2969523654 hasConcept C11413529 @default.
- W2969523654 hasConcept C121332964 @default.
- W2969523654 hasConcept C126255220 @default.
- W2969523654 hasConcept C126388530 @default.
- W2969523654 hasConcept C127413603 @default.
- W2969523654 hasConcept C154945302 @default.
- W2969523654 hasConcept C155253501 @default.
- W2969523654 hasConcept C15744967 @default.
- W2969523654 hasConcept C158622935 @default.
- W2969523654 hasConcept C162324750 @default.
- W2969523654 hasConcept C177264268 @default.
- W2969523654 hasConcept C199360897 @default.
- W2969523654 hasConcept C201995342 @default.
- W2969523654 hasConcept C2524010 @default.
- W2969523654 hasConcept C2777303404 @default.
- W2969523654 hasConcept C2778112365 @default.
- W2969523654 hasConcept C2778770139 @default.
- W2969523654 hasConcept C2780451532 @default.
- W2969523654 hasConcept C2834757 @default.
- W2969523654 hasConcept C28719098 @default.
- W2969523654 hasConcept C33923547 @default.
- W2969523654 hasConcept C41008148 @default.
- W2969523654 hasConcept C50522688 @default.
- W2969523654 hasConcept C54355233 @default.
- W2969523654 hasConcept C62520636 @default.
- W2969523654 hasConcept C77805123 @default.
- W2969523654 hasConcept C86803240 @default.
- W2969523654 hasConcept C97541855 @default.
- W2969523654 hasConceptScore W2969523654C11413529 @default.
- W2969523654 hasConceptScore W2969523654C121332964 @default.
- W2969523654 hasConceptScore W2969523654C126255220 @default.
- W2969523654 hasConceptScore W2969523654C126388530 @default.
- W2969523654 hasConceptScore W2969523654C127413603 @default.
- W2969523654 hasConceptScore W2969523654C154945302 @default.
- W2969523654 hasConceptScore W2969523654C155253501 @default.
- W2969523654 hasConceptScore W2969523654C15744967 @default.
- W2969523654 hasConceptScore W2969523654C158622935 @default.
- W2969523654 hasConceptScore W2969523654C162324750 @default.
- W2969523654 hasConceptScore W2969523654C177264268 @default.
- W2969523654 hasConceptScore W2969523654C199360897 @default.
- W2969523654 hasConceptScore W2969523654C201995342 @default.
- W2969523654 hasConceptScore W2969523654C2524010 @default.
- W2969523654 hasConceptScore W2969523654C2777303404 @default.
- W2969523654 hasConceptScore W2969523654C2778112365 @default.
- W2969523654 hasConceptScore W2969523654C2778770139 @default.
- W2969523654 hasConceptScore W2969523654C2780451532 @default.
- W2969523654 hasConceptScore W2969523654C2834757 @default.
- W2969523654 hasConceptScore W2969523654C28719098 @default.
- W2969523654 hasConceptScore W2969523654C33923547 @default.
- W2969523654 hasConceptScore W2969523654C41008148 @default.
- W2969523654 hasConceptScore W2969523654C50522688 @default.
- W2969523654 hasConceptScore W2969523654C54355233 @default.
- W2969523654 hasConceptScore W2969523654C62520636 @default.
- W2969523654 hasConceptScore W2969523654C77805123 @default.
- W2969523654 hasConceptScore W2969523654C86803240 @default.
- W2969523654 hasConceptScore W2969523654C97541855 @default.