Matches in SemOpenAlex for { <https://semopenalex.org/work/W2969574611> ?p ?o ?g. }
- W2969574611 endingPage "1" @default.
- W2969574611 startingPage "1" @default.
- W2969574611 abstract "Deep learning models often use a flat softmax layer to classify samples after feature extraction in visual classification tasks. However, it is hard to make a single decision of finding the true label from massive classes. In this scenario, hierarchical classification is proved to be an effective solution and can be utilized to replace the softmax layer. A key issue of hierarchical classification is to construct a good label structure, which is very significant for classification performance. Several works have been proposed to address the issue, but they have some limitations and are almost designed heuristically. In this article, inspired by fuzzy rough set theory, we propose a deep fuzzy tree model which learns a better tree structure and classifiers for hierarchical classification with theory guarantee. Experimental results show the effectiveness and efficiency of the proposed model in various visual classification datasets." @default.
- W2969574611 created "2019-08-29" @default.
- W2969574611 creator A5006952581 @default.
- W2969574611 creator A5017268909 @default.
- W2969574611 creator A5040516036 @default.
- W2969574611 creator A5040886356 @default.
- W2969574611 creator A5049753817 @default.
- W2969574611 creator A5055051123 @default.
- W2969574611 creator A5056686459 @default.
- W2969574611 date "2019-01-01" @default.
- W2969574611 modified "2023-10-10" @default.
- W2969574611 title "Deep Fuzzy Tree for Large-Scale Hierarchical Visual Classification" @default.
- W2969574611 cites W122007452 @default.
- W2969574611 cites W1510073064 @default.
- W2969574611 cites W1967732418 @default.
- W2969574611 cites W1987083125 @default.
- W2969574611 cites W1996624051 @default.
- W2969574611 cites W2016944307 @default.
- W2969574611 cites W2017814585 @default.
- W2969574611 cites W2031489346 @default.
- W2969574611 cites W2050401513 @default.
- W2969574611 cites W2061554433 @default.
- W2969574611 cites W2112993448 @default.
- W2969574611 cites W2116339064 @default.
- W2969574611 cites W2117539524 @default.
- W2969574611 cites W2131681506 @default.
- W2969574611 cites W2138011018 @default.
- W2969574611 cites W2148126650 @default.
- W2969574611 cites W2150766729 @default.
- W2969574611 cites W2507528282 @default.
- W2969574611 cites W2568086521 @default.
- W2969574611 cites W2583115687 @default.
- W2969574611 cites W2740889030 @default.
- W2969574611 cites W2742055352 @default.
- W2969574611 cites W2885877913 @default.
- W2969574611 cites W2919745593 @default.
- W2969574611 cites W2963855931 @default.
- W2969574611 cites W3103818906 @default.
- W2969574611 cites W3122990092 @default.
- W2969574611 doi "https://doi.org/10.1109/tfuzz.2019.2936801" @default.
- W2969574611 hasPublicationYear "2019" @default.
- W2969574611 type Work @default.
- W2969574611 sameAs 2969574611 @default.
- W2969574611 citedByCount "12" @default.
- W2969574611 countsByYear W29695746112020 @default.
- W2969574611 countsByYear W29695746112021 @default.
- W2969574611 countsByYear W29695746112022 @default.
- W2969574611 countsByYear W29695746112023 @default.
- W2969574611 crossrefType "journal-article" @default.
- W2969574611 hasAuthorship W2969574611A5006952581 @default.
- W2969574611 hasAuthorship W2969574611A5017268909 @default.
- W2969574611 hasAuthorship W2969574611A5040516036 @default.
- W2969574611 hasAuthorship W2969574611A5040886356 @default.
- W2969574611 hasAuthorship W2969574611A5049753817 @default.
- W2969574611 hasAuthorship W2969574611A5055051123 @default.
- W2969574611 hasAuthorship W2969574611A5056686459 @default.
- W2969574611 hasBestOaLocation W29695746112 @default.
- W2969574611 hasConcept C108583219 @default.
- W2969574611 hasConcept C113174947 @default.
- W2969574611 hasConcept C11413529 @default.
- W2969574611 hasConcept C115961682 @default.
- W2969574611 hasConcept C119857082 @default.
- W2969574611 hasConcept C124101348 @default.
- W2969574611 hasConcept C134306372 @default.
- W2969574611 hasConcept C138885662 @default.
- W2969574611 hasConcept C153180895 @default.
- W2969574611 hasConcept C154945302 @default.
- W2969574611 hasConcept C163797641 @default.
- W2969574611 hasConcept C188441871 @default.
- W2969574611 hasConcept C197855036 @default.
- W2969574611 hasConcept C199360897 @default.
- W2969574611 hasConcept C26517878 @default.
- W2969574611 hasConcept C2776401178 @default.
- W2969574611 hasConcept C2780801425 @default.
- W2969574611 hasConcept C33923547 @default.
- W2969574611 hasConcept C38652104 @default.
- W2969574611 hasConcept C41008148 @default.
- W2969574611 hasConcept C41895202 @default.
- W2969574611 hasConcept C42011625 @default.
- W2969574611 hasConcept C52622490 @default.
- W2969574611 hasConcept C58166 @default.
- W2969574611 hasConcept C75294576 @default.
- W2969574611 hasConcept C84525736 @default.
- W2969574611 hasConceptScore W2969574611C108583219 @default.
- W2969574611 hasConceptScore W2969574611C113174947 @default.
- W2969574611 hasConceptScore W2969574611C11413529 @default.
- W2969574611 hasConceptScore W2969574611C115961682 @default.
- W2969574611 hasConceptScore W2969574611C119857082 @default.
- W2969574611 hasConceptScore W2969574611C124101348 @default.
- W2969574611 hasConceptScore W2969574611C134306372 @default.
- W2969574611 hasConceptScore W2969574611C138885662 @default.
- W2969574611 hasConceptScore W2969574611C153180895 @default.
- W2969574611 hasConceptScore W2969574611C154945302 @default.
- W2969574611 hasConceptScore W2969574611C163797641 @default.
- W2969574611 hasConceptScore W2969574611C188441871 @default.
- W2969574611 hasConceptScore W2969574611C197855036 @default.
- W2969574611 hasConceptScore W2969574611C199360897 @default.
- W2969574611 hasConceptScore W2969574611C26517878 @default.