Matches in SemOpenAlex for { <https://semopenalex.org/work/W2969590897> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2969590897 endingPage "106391" @default.
- W2969590897 startingPage "106391" @default.
- W2969590897 abstract "Conventional interpretation of the well-testing data cannot effectively detect the real formation response from the noise to characterize the reservoir. Machine learning techniques provide a new data interpretation approach to discover the relationships between production rates and pressure responses of the well. In this study, the long short-term memory networks (LSTMNs) are explored to analyze the field permanent downhole gauge (PDG) data for better reservoir characterization and modelling. Unlike the conventional recurrent neural networks (RNNs), LSTMNs are designed to learn the long-term dependencies among the sequential data sets. More specifically, an approximate analytical model is firstly proposed to describe the flow rate and pressure behavior in a tight reservoir with natural fractures. The synthetic flow rate and pressure data with noise generated by the analytical model are then used to train the LSTMNs. Prediction accuracy of the LSTMNs is first validated by using the field data sets collected from Montney Formation, and their applicability for reservoirs with different types of boundaries are tested by the synthetic flow rate and pressure data sets generated from the analytical models. The field cases have proved that this data mining technique is able to capture the well shut-in operations in Montney liquid-rich tight reservoirs, where the well bottomhole pressure can be accurately predicted when feeding the model with both gas rate and condensate rate. In addition, the LSTMNs are able to learn the pressure behavior from the noisy data sets and do not require a denoising procedure when predicting the pressure response for a given flow rate. In summary, this work first uses the LSTMNs to interpret well-testing data in naturally fractured tight reservoirs. The LSTMNs not only shows a great tolerance to the noise of datasets, but also can capture the pressure responses characterized by well shut-in, boundary effects, and stress-sensitive fractures. It is proved that this data-driven model can discover the patterns and relationships between the flow rate and pressure through the data mining process, while not requiring the prior knowledge of physical model or mathematical assumptions." @default.
- W2969590897 created "2019-08-29" @default.
- W2969590897 creator A5041699269 @default.
- W2969590897 creator A5045327023 @default.
- W2969590897 date "2019-12-01" @default.
- W2969590897 modified "2023-10-18" @default.
- W2969590897 title "Application of the long short-term memory networks for well-testing data interpretation in tight reservoirs" @default.
- W2969590897 cites W1976012403 @default.
- W2969590897 cites W1996950707 @default.
- W2969590897 cites W2017048267 @default.
- W2969590897 cites W2024326516 @default.
- W2969590897 cites W2046867728 @default.
- W2969590897 cites W2057653135 @default.
- W2969590897 cites W2058164575 @default.
- W2969590897 cites W2064675550 @default.
- W2969590897 cites W2107878631 @default.
- W2969590897 cites W2156886112 @default.
- W2969590897 cites W2269824217 @default.
- W2969590897 cites W2894821558 @default.
- W2969590897 cites W2910850561 @default.
- W2969590897 cites W2919115771 @default.
- W2969590897 doi "https://doi.org/10.1016/j.petrol.2019.106391" @default.
- W2969590897 hasPublicationYear "2019" @default.
- W2969590897 type Work @default.
- W2969590897 sameAs 2969590897 @default.
- W2969590897 citedByCount "23" @default.
- W2969590897 countsByYear W29695908972020 @default.
- W2969590897 countsByYear W29695908972021 @default.
- W2969590897 countsByYear W29695908972022 @default.
- W2969590897 countsByYear W29695908972023 @default.
- W2969590897 crossrefType "journal-article" @default.
- W2969590897 hasAuthorship W2969590897A5041699269 @default.
- W2969590897 hasAuthorship W2969590897A5045327023 @default.
- W2969590897 hasConcept C115961682 @default.
- W2969590897 hasConcept C121332964 @default.
- W2969590897 hasConcept C124101348 @default.
- W2969590897 hasConcept C127413603 @default.
- W2969590897 hasConcept C14641988 @default.
- W2969590897 hasConcept C154945302 @default.
- W2969590897 hasConcept C160920958 @default.
- W2969590897 hasConcept C16910744 @default.
- W2969590897 hasConcept C199360897 @default.
- W2969590897 hasConcept C2776364302 @default.
- W2969590897 hasConcept C35817400 @default.
- W2969590897 hasConcept C41008148 @default.
- W2969590897 hasConcept C50644808 @default.
- W2969590897 hasConcept C61797465 @default.
- W2969590897 hasConcept C62520636 @default.
- W2969590897 hasConcept C78762247 @default.
- W2969590897 hasConcept C99498987 @default.
- W2969590897 hasConceptScore W2969590897C115961682 @default.
- W2969590897 hasConceptScore W2969590897C121332964 @default.
- W2969590897 hasConceptScore W2969590897C124101348 @default.
- W2969590897 hasConceptScore W2969590897C127413603 @default.
- W2969590897 hasConceptScore W2969590897C14641988 @default.
- W2969590897 hasConceptScore W2969590897C154945302 @default.
- W2969590897 hasConceptScore W2969590897C160920958 @default.
- W2969590897 hasConceptScore W2969590897C16910744 @default.
- W2969590897 hasConceptScore W2969590897C199360897 @default.
- W2969590897 hasConceptScore W2969590897C2776364302 @default.
- W2969590897 hasConceptScore W2969590897C35817400 @default.
- W2969590897 hasConceptScore W2969590897C41008148 @default.
- W2969590897 hasConceptScore W2969590897C50644808 @default.
- W2969590897 hasConceptScore W2969590897C61797465 @default.
- W2969590897 hasConceptScore W2969590897C62520636 @default.
- W2969590897 hasConceptScore W2969590897C78762247 @default.
- W2969590897 hasConceptScore W2969590897C99498987 @default.
- W2969590897 hasFunder F4320334593 @default.
- W2969590897 hasLocation W29695908971 @default.
- W2969590897 hasOpenAccess W2969590897 @default.
- W2969590897 hasPrimaryLocation W29695908971 @default.
- W2969590897 hasRelatedWork W1572796437 @default.
- W2969590897 hasRelatedWork W2007024157 @default.
- W2969590897 hasRelatedWork W2015435704 @default.
- W2969590897 hasRelatedWork W2103044460 @default.
- W2969590897 hasRelatedWork W2349215275 @default.
- W2969590897 hasRelatedWork W2360905900 @default.
- W2969590897 hasRelatedWork W2363918174 @default.
- W2969590897 hasRelatedWork W2380423151 @default.
- W2969590897 hasRelatedWork W4237425135 @default.
- W2969590897 hasRelatedWork W4316039126 @default.
- W2969590897 hasVolume "183" @default.
- W2969590897 isParatext "false" @default.
- W2969590897 isRetracted "false" @default.
- W2969590897 magId "2969590897" @default.
- W2969590897 workType "article" @default.