Matches in SemOpenAlex for { <https://semopenalex.org/work/W2969596529> ?p ?o ?g. }
- W2969596529 endingPage "118964" @default.
- W2969596529 startingPage "118954" @default.
- W2969596529 abstract "Extracting robust fault sensitive features of vibration signals remains a challenge for rotating machinery fault diagnosis under variable operating conditions. Most existing fault diagnosis methods based on the convolutional neural network (CNN) can only extract single-scale features, which not only loss fault sensitive information on other scales, but also suffer from the domain shift problem. In this work, a novel end-to-end deep learning network named adaptive weighted multiscale convolutional neural network (AWMSCNN) is proposed to adaptively extract robust and discriminative multiscale fusion features from raw vibration signals. The AWMSCNN consists of three main components: the denoising layer, the adaptive weighted multiscale convolutional (AWMSC) block, and the multiscale feature fusion layer. The AWMSC block can learn rich and complementary features on multiple scales in parallel. Then, an adaptive weight vector is introduced to modulate multiscale features to emphasize fault sensitive features and suppress features that are sensitive to operating conditions. The train wheelset bearing dataset and the bearing dataset provided by Case Western Reserve University (CWRU) are used to verify the superiority of the proposed model over the basic CNN and other multiscale CNN models. The experiment results show that the proposed model has strong fault discriminative ability and domain adaptive ability against variable operating conditions." @default.
- W2969596529 created "2019-08-29" @default.
- W2969596529 creator A5000399610 @default.
- W2969596529 creator A5024660025 @default.
- W2969596529 creator A5034617242 @default.
- W2969596529 creator A5056666804 @default.
- W2969596529 creator A5057091014 @default.
- W2969596529 date "2019-01-01" @default.
- W2969596529 modified "2023-10-10" @default.
- W2969596529 title "An Adaptive Weighted Multiscale Convolutional Neural Network for Rotating Machinery Fault Diagnosis Under Variable Operating Conditions" @default.
- W2969596529 cites W1438045566 @default.
- W2969596529 cites W2019245857 @default.
- W2969596529 cites W243674440 @default.
- W2969596529 cites W2584994008 @default.
- W2969596529 cites W2589171657 @default.
- W2969596529 cites W2595657631 @default.
- W2969596529 cites W2744790985 @default.
- W2969596529 cites W2752782242 @default.
- W2969596529 cites W2803884688 @default.
- W2969596529 cites W2807561979 @default.
- W2969596529 cites W2808496542 @default.
- W2969596529 cites W2808622270 @default.
- W2969596529 cites W2810292802 @default.
- W2969596529 cites W2810591976 @default.
- W2969596529 cites W2884106773 @default.
- W2969596529 cites W2884390056 @default.
- W2969596529 cites W2888337213 @default.
- W2969596529 cites W2890207295 @default.
- W2969596529 cites W2891319189 @default.
- W2969596529 cites W2894222237 @default.
- W2969596529 cites W2899760806 @default.
- W2969596529 cites W2900438754 @default.
- W2969596529 cites W2902769393 @default.
- W2969596529 cites W2905949437 @default.
- W2969596529 cites W2912374714 @default.
- W2969596529 cites W2912960306 @default.
- W2969596529 cites W2926723017 @default.
- W2969596529 cites W2947160970 @default.
- W2969596529 cites W2952218682 @default.
- W2969596529 doi "https://doi.org/10.1109/access.2019.2936625" @default.
- W2969596529 hasPublicationYear "2019" @default.
- W2969596529 type Work @default.
- W2969596529 sameAs 2969596529 @default.
- W2969596529 citedByCount "48" @default.
- W2969596529 countsByYear W29695965292019 @default.
- W2969596529 countsByYear W29695965292020 @default.
- W2969596529 countsByYear W29695965292021 @default.
- W2969596529 countsByYear W29695965292022 @default.
- W2969596529 countsByYear W29695965292023 @default.
- W2969596529 crossrefType "journal-article" @default.
- W2969596529 hasAuthorship W2969596529A5000399610 @default.
- W2969596529 hasAuthorship W2969596529A5024660025 @default.
- W2969596529 hasAuthorship W2969596529A5034617242 @default.
- W2969596529 hasAuthorship W2969596529A5056666804 @default.
- W2969596529 hasAuthorship W2969596529A5057091014 @default.
- W2969596529 hasBestOaLocation W29695965291 @default.
- W2969596529 hasConcept C127313418 @default.
- W2969596529 hasConcept C138885662 @default.
- W2969596529 hasConcept C153180895 @default.
- W2969596529 hasConcept C154945302 @default.
- W2969596529 hasConcept C165205528 @default.
- W2969596529 hasConcept C175551986 @default.
- W2969596529 hasConcept C2524010 @default.
- W2969596529 hasConcept C2776401178 @default.
- W2969596529 hasConcept C2777210771 @default.
- W2969596529 hasConcept C33923547 @default.
- W2969596529 hasConcept C41008148 @default.
- W2969596529 hasConcept C41895202 @default.
- W2969596529 hasConcept C52622490 @default.
- W2969596529 hasConcept C81363708 @default.
- W2969596529 hasConcept C97931131 @default.
- W2969596529 hasConceptScore W2969596529C127313418 @default.
- W2969596529 hasConceptScore W2969596529C138885662 @default.
- W2969596529 hasConceptScore W2969596529C153180895 @default.
- W2969596529 hasConceptScore W2969596529C154945302 @default.
- W2969596529 hasConceptScore W2969596529C165205528 @default.
- W2969596529 hasConceptScore W2969596529C175551986 @default.
- W2969596529 hasConceptScore W2969596529C2524010 @default.
- W2969596529 hasConceptScore W2969596529C2776401178 @default.
- W2969596529 hasConceptScore W2969596529C2777210771 @default.
- W2969596529 hasConceptScore W2969596529C33923547 @default.
- W2969596529 hasConceptScore W2969596529C41008148 @default.
- W2969596529 hasConceptScore W2969596529C41895202 @default.
- W2969596529 hasConceptScore W2969596529C52622490 @default.
- W2969596529 hasConceptScore W2969596529C81363708 @default.
- W2969596529 hasConceptScore W2969596529C97931131 @default.
- W2969596529 hasFunder F4320321001 @default.
- W2969596529 hasLocation W29695965291 @default.
- W2969596529 hasOpenAccess W2969596529 @default.
- W2969596529 hasPrimaryLocation W29695965291 @default.
- W2969596529 hasRelatedWork W2059299633 @default.
- W2969596529 hasRelatedWork W2404514746 @default.
- W2969596529 hasRelatedWork W2406522397 @default.
- W2969596529 hasRelatedWork W2518599539 @default.
- W2969596529 hasRelatedWork W2546942002 @default.
- W2969596529 hasRelatedWork W2586441539 @default.
- W2969596529 hasRelatedWork W2725397116 @default.
- W2969596529 hasRelatedWork W2743258233 @default.