Matches in SemOpenAlex for { <https://semopenalex.org/work/W2969596581> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2969596581 endingPage "052031" @default.
- W2969596581 startingPage "052031" @default.
- W2969596581 abstract "Abstract In light of the increasing demand and capacity in the railway industry, it is imperative to maintain safety in relation to the complexities of the substantial railway stations. Thus, it is important to take note of the time where investments in new technologies directed at the safety of the railway enable safety and protection in this area. Novel technological techniques such as big data analysis (BDA), data mining or machine learning (ML) have been developed and applied in many areas such as sales, banking and healthcare. The development of such methods has important benefits within the context of railway safety, however, these new methods need to be implemented and developed with consideration of whether these operational models can help to solve the various difficulties that currently exist in the risk analysis of railway stations. Moreover, as the adoption of the Internet of thing (IoT) grows, it is expected that analytical needs for handling data will also increase. It has been shown that the progression towards automation and applying such innovative new technologies such as BDA may be a powerful tool for integration in the future of transportation in general and the railway industry in particular, whereby analytical predictions can aid in the development of safer railway stations which have greater potential for ensuring the safety of passengers. In this paper a Bow Tie (BT) framework model has been created to combine BDA into the risk assessment process. The BDA can be beneficial to the risk assessment, support the decision makers in real time, and reduce human errors. This method can be fully integrated into passenger data and the business model for the railway station. Employing the existing safety records utilizing BDA is expected to mitigate risks, predict hazards, raise safety and security efficiency and reduce the cost." @default.
- W2969596581 created "2019-08-29" @default.
- W2969596581 creator A5011024488 @default.
- W2969596581 creator A5033737553 @default.
- W2969596581 creator A5051303118 @default.
- W2969596581 date "2019-09-01" @default.
- W2969596581 modified "2023-09-23" @default.
- W2969596581 title "Utilizing Big Data for Enhancing Passenger Safety in Railway Stations" @default.
- W2969596581 cites W125967950 @default.
- W2969596581 cites W139852187 @default.
- W2969596581 cites W1837982956 @default.
- W2969596581 cites W1979230058 @default.
- W2969596581 cites W1984248093 @default.
- W2969596581 cites W1991463121 @default.
- W2969596581 cites W2012533078 @default.
- W2969596581 cites W2014155899 @default.
- W2969596581 cites W2019581996 @default.
- W2969596581 cites W2045588060 @default.
- W2969596581 cites W2052577283 @default.
- W2969596581 cites W2081070791 @default.
- W2969596581 cites W2085731719 @default.
- W2969596581 cites W2091362785 @default.
- W2969596581 cites W2109383878 @default.
- W2969596581 cites W2154247686 @default.
- W2969596581 cites W2169974665 @default.
- W2969596581 cites W2278035293 @default.
- W2969596581 cites W2766991080 @default.
- W2969596581 cites W2818473824 @default.
- W2969596581 cites W2883673509 @default.
- W2969596581 cites W2899045533 @default.
- W2969596581 doi "https://doi.org/10.1088/1757-899x/603/5/052031" @default.
- W2969596581 hasPublicationYear "2019" @default.
- W2969596581 type Work @default.
- W2969596581 sameAs 2969596581 @default.
- W2969596581 citedByCount "6" @default.
- W2969596581 countsByYear W29695965812020 @default.
- W2969596581 countsByYear W29695965812021 @default.
- W2969596581 countsByYear W29695965812023 @default.
- W2969596581 crossrefType "journal-article" @default.
- W2969596581 hasAuthorship W2969596581A5011024488 @default.
- W2969596581 hasAuthorship W2969596581A5033737553 @default.
- W2969596581 hasAuthorship W2969596581A5051303118 @default.
- W2969596581 hasBestOaLocation W29695965811 @default.
- W2969596581 hasConcept C111919701 @default.
- W2969596581 hasConcept C112930515 @default.
- W2969596581 hasConcept C115901376 @default.
- W2969596581 hasConcept C127413603 @default.
- W2969596581 hasConcept C144133560 @default.
- W2969596581 hasConcept C151730666 @default.
- W2969596581 hasConcept C154945302 @default.
- W2969596581 hasConcept C207267971 @default.
- W2969596581 hasConcept C22212356 @default.
- W2969596581 hasConcept C2776654903 @default.
- W2969596581 hasConcept C2779343474 @default.
- W2969596581 hasConcept C38652104 @default.
- W2969596581 hasConcept C41008148 @default.
- W2969596581 hasConcept C75684735 @default.
- W2969596581 hasConcept C78519656 @default.
- W2969596581 hasConcept C86803240 @default.
- W2969596581 hasConcept C98045186 @default.
- W2969596581 hasConceptScore W2969596581C111919701 @default.
- W2969596581 hasConceptScore W2969596581C112930515 @default.
- W2969596581 hasConceptScore W2969596581C115901376 @default.
- W2969596581 hasConceptScore W2969596581C127413603 @default.
- W2969596581 hasConceptScore W2969596581C144133560 @default.
- W2969596581 hasConceptScore W2969596581C151730666 @default.
- W2969596581 hasConceptScore W2969596581C154945302 @default.
- W2969596581 hasConceptScore W2969596581C207267971 @default.
- W2969596581 hasConceptScore W2969596581C22212356 @default.
- W2969596581 hasConceptScore W2969596581C2776654903 @default.
- W2969596581 hasConceptScore W2969596581C2779343474 @default.
- W2969596581 hasConceptScore W2969596581C38652104 @default.
- W2969596581 hasConceptScore W2969596581C41008148 @default.
- W2969596581 hasConceptScore W2969596581C75684735 @default.
- W2969596581 hasConceptScore W2969596581C78519656 @default.
- W2969596581 hasConceptScore W2969596581C86803240 @default.
- W2969596581 hasConceptScore W2969596581C98045186 @default.
- W2969596581 hasIssue "5" @default.
- W2969596581 hasLocation W29695965811 @default.
- W2969596581 hasLocation W29695965812 @default.
- W2969596581 hasLocation W29695965813 @default.
- W2969596581 hasOpenAccess W2969596581 @default.
- W2969596581 hasPrimaryLocation W29695965811 @default.
- W2969596581 hasRelatedWork W1516455402 @default.
- W2969596581 hasRelatedWork W2014384157 @default.
- W2969596581 hasRelatedWork W2034234702 @default.
- W2969596581 hasRelatedWork W2036640987 @default.
- W2969596581 hasRelatedWork W2059148470 @default.
- W2969596581 hasRelatedWork W2151499605 @default.
- W2969596581 hasRelatedWork W2361884062 @default.
- W2969596581 hasRelatedWork W3110939572 @default.
- W2969596581 hasRelatedWork W587899277 @default.
- W2969596581 hasRelatedWork W603310034 @default.
- W2969596581 hasVolume "603" @default.
- W2969596581 isParatext "false" @default.
- W2969596581 isRetracted "false" @default.
- W2969596581 magId "2969596581" @default.
- W2969596581 workType "article" @default.