Matches in SemOpenAlex for { <https://semopenalex.org/work/W2969630114> ?p ?o ?g. }
- W2969630114 endingPage "119653" @default.
- W2969630114 startingPage "119644" @default.
- W2969630114 abstract "Due to the risk of radiation from computed tomography (CT) scanning on the human body, the number of CT scans that can be performed on an individual each year is limited. However, CT images play a very important role in medical diagnosis. Therefore, this study proposes a method of generating synthetic CT to solve this problem. Considering that magnetic resonance imaging (MRI) is not harmful to the human body, there is no limit on the number of scans that can be performed with this procedure. In this paper, an image segmentation method is used to segment an MRI, and each segment is given a corresponding Hounsfield Unit (HU) value to finally generate a synthetic CT image. Since the image segmentation performance directly affects the generated synthetic CT image, this paper introduces a multitask learning strategy into a maximum entropy clustering (MEC) algorithm. A multitask maximum entropy clustering (MT-MEC) algorithm is proposed, which is used to effectively segment the MRI of the brain. The algorithm can use knowledge from multiple tasks to improve the learning ability of all tasks, and the MEC algorithm can effectively avoid interference from noise. The experimental results show that the proposed MT-MEC algorithm has good image segmentation performance, which results in reliable performance of the final synthetic CT image." @default.
- W2969630114 created "2019-08-29" @default.
- W2969630114 creator A5001994677 @default.
- W2969630114 creator A5018829722 @default.
- W2969630114 creator A5052583456 @default.
- W2969630114 creator A5068828491 @default.
- W2969630114 creator A5090932123 @default.
- W2969630114 date "2019-01-01" @default.
- W2969630114 modified "2023-10-16" @default.
- W2969630114 title "A Novel Synthetic CT Generation Method Using Multitask Maximum Entropy Clustering" @default.
- W2969630114 cites W1530341037 @default.
- W2969630114 cites W1530699444 @default.
- W2969630114 cites W1596717185 @default.
- W2969630114 cites W1971098086 @default.
- W2969630114 cites W1981166908 @default.
- W2969630114 cites W1983766926 @default.
- W2969630114 cites W2002917851 @default.
- W2969630114 cites W2010471759 @default.
- W2969630114 cites W2026563727 @default.
- W2969630114 cites W2037525266 @default.
- W2969630114 cites W2045415729 @default.
- W2969630114 cites W2080917896 @default.
- W2969630114 cites W2093108602 @default.
- W2969630114 cites W2108154570 @default.
- W2969630114 cites W2113076747 @default.
- W2969630114 cites W2115242586 @default.
- W2969630114 cites W2120688485 @default.
- W2969630114 cites W2125836384 @default.
- W2969630114 cites W2132870739 @default.
- W2969630114 cites W2143104527 @default.
- W2969630114 cites W2158108973 @default.
- W2969630114 cites W2161160262 @default.
- W2969630114 cites W2162852363 @default.
- W2969630114 cites W2163701518 @default.
- W2969630114 cites W2165698076 @default.
- W2969630114 cites W2170860445 @default.
- W2969630114 cites W2345189929 @default.
- W2969630114 cites W2358897994 @default.
- W2969630114 cites W2444514730 @default.
- W2969630114 cites W2584922303 @default.
- W2969630114 cites W2618241468 @default.
- W2969630114 cites W2750599140 @default.
- W2969630114 cites W2808597956 @default.
- W2969630114 cites W2888636721 @default.
- W2969630114 cites W2900570788 @default.
- W2969630114 cites W2913340405 @default.
- W2969630114 cites W2918947501 @default.
- W2969630114 cites W2921625815 @default.
- W2969630114 cites W2923146325 @default.
- W2969630114 cites W2935787471 @default.
- W2969630114 cites W2947718391 @default.
- W2969630114 cites W2959044096 @default.
- W2969630114 cites W944333893 @default.
- W2969630114 doi "https://doi.org/10.1109/access.2019.2937124" @default.
- W2969630114 hasPublicationYear "2019" @default.
- W2969630114 type Work @default.
- W2969630114 sameAs 2969630114 @default.
- W2969630114 citedByCount "10" @default.
- W2969630114 countsByYear W29696301142019 @default.
- W2969630114 countsByYear W29696301142020 @default.
- W2969630114 countsByYear W29696301142021 @default.
- W2969630114 countsByYear W29696301142022 @default.
- W2969630114 countsByYear W29696301142023 @default.
- W2969630114 crossrefType "journal-article" @default.
- W2969630114 hasAuthorship W2969630114A5001994677 @default.
- W2969630114 hasAuthorship W2969630114A5018829722 @default.
- W2969630114 hasAuthorship W2969630114A5052583456 @default.
- W2969630114 hasAuthorship W2969630114A5068828491 @default.
- W2969630114 hasAuthorship W2969630114A5090932123 @default.
- W2969630114 hasBestOaLocation W29696301141 @default.
- W2969630114 hasConcept C106301342 @default.
- W2969630114 hasConcept C11413529 @default.
- W2969630114 hasConcept C121332964 @default.
- W2969630114 hasConcept C124504099 @default.
- W2969630114 hasConcept C126838900 @default.
- W2969630114 hasConcept C153180895 @default.
- W2969630114 hasConcept C154945302 @default.
- W2969630114 hasConcept C187954543 @default.
- W2969630114 hasConcept C31601959 @default.
- W2969630114 hasConcept C31972630 @default.
- W2969630114 hasConcept C41008148 @default.
- W2969630114 hasConcept C544519230 @default.
- W2969630114 hasConcept C62520636 @default.
- W2969630114 hasConcept C71924100 @default.
- W2969630114 hasConcept C73555534 @default.
- W2969630114 hasConcept C89600930 @default.
- W2969630114 hasConcept C9679016 @default.
- W2969630114 hasConceptScore W2969630114C106301342 @default.
- W2969630114 hasConceptScore W2969630114C11413529 @default.
- W2969630114 hasConceptScore W2969630114C121332964 @default.
- W2969630114 hasConceptScore W2969630114C124504099 @default.
- W2969630114 hasConceptScore W2969630114C126838900 @default.
- W2969630114 hasConceptScore W2969630114C153180895 @default.
- W2969630114 hasConceptScore W2969630114C154945302 @default.
- W2969630114 hasConceptScore W2969630114C187954543 @default.
- W2969630114 hasConceptScore W2969630114C31601959 @default.
- W2969630114 hasConceptScore W2969630114C31972630 @default.
- W2969630114 hasConceptScore W2969630114C41008148 @default.