Matches in SemOpenAlex for { <https://semopenalex.org/work/W2969631037> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2969631037 endingPage "280" @default.
- W2969631037 startingPage "251" @default.
- W2969631037 abstract "Summary The city of Exeter, UK, is experiencing unprecedented growth, putting pressure on traffic infrastructure. As well as traffic network management, understanding and influencing commuter behaviour is important for reducing congestion. Information about current commuter behaviour has been gathered through a large on-line survey, and similar individuals have been grouped to explore distinct behaviour profiles to inform intervention design to reduce commuter congestion. Statistical analysis within societal applications benefit from incorporating available social scientist expert knowledge. Current clustering approaches for the analysis of social surveys assume that the number of groups and the within-group narratives are unknown a priori. Here, however, informed by valuable expert knowledge, we develop a novel Bayesian approach for creating a clear opposing transport mode group narrative within survey respondents, simplifying communication with project partners and the general public. Our methodology establishes groups characterizing opposing behaviours based on a key multinomial survey question by constraining parts of our prior judgement within a Bayesian finite mixture model. Drivers of group membership and within-group behavioural differences are modelled hierarchically by using further information from the survey. In applying the methodology we demonstrate how it can be used to understand the key drivers of opposing behaviours in any wider application." @default.
- W2969631037 created "2019-08-29" @default.
- W2969631037 creator A5014270925 @default.
- W2969631037 creator A5045480596 @default.
- W2969631037 creator A5053680447 @default.
- W2969631037 creator A5086223111 @default.
- W2969631037 date "2019-08-23" @default.
- W2969631037 modified "2023-09-27" @default.
- W2969631037 title "‘What Drives Commuter Behaviour?’: A Bayesian Clustering Approach for Understanding Opposing Behaviours in Social Surveys" @default.
- W2969631037 cites W1796291957 @default.
- W2969631037 cites W1974661182 @default.
- W2969631037 cites W1976041429 @default.
- W2969631037 cites W1977039562 @default.
- W2969631037 cites W1980275109 @default.
- W2969631037 cites W1993319799 @default.
- W2969631037 cites W1996375237 @default.
- W2969631037 cites W2011832962 @default.
- W2969631037 cites W2013652217 @default.
- W2969631037 cites W2023886518 @default.
- W2969631037 cites W2035756456 @default.
- W2969631037 cites W2047555270 @default.
- W2969631037 cites W2056243712 @default.
- W2969631037 cites W2066076115 @default.
- W2969631037 cites W2068640436 @default.
- W2969631037 cites W2075657928 @default.
- W2969631037 cites W2079025608 @default.
- W2969631037 cites W2080838288 @default.
- W2969631037 cites W2100420630 @default.
- W2969631037 cites W2105602542 @default.
- W2969631037 cites W2119555207 @default.
- W2969631037 cites W2138030815 @default.
- W2969631037 cites W2142344524 @default.
- W2969631037 cites W2144550025 @default.
- W2969631037 cites W2166730394 @default.
- W2969631037 cites W2224478685 @default.
- W2969631037 cites W2229953650 @default.
- W2969631037 cites W2326450941 @default.
- W2969631037 cites W2467706291 @default.
- W2969631037 cites W2726396617 @default.
- W2969631037 cites W2805752668 @default.
- W2969631037 cites W3103181292 @default.
- W2969631037 cites W3103255703 @default.
- W2969631037 doi "https://doi.org/10.1111/rssa.12499" @default.
- W2969631037 hasPublicationYear "2019" @default.
- W2969631037 type Work @default.
- W2969631037 sameAs 2969631037 @default.
- W2969631037 citedByCount "3" @default.
- W2969631037 countsByYear W29696310372021 @default.
- W2969631037 countsByYear W29696310372022 @default.
- W2969631037 countsByYear W29696310372023 @default.
- W2969631037 crossrefType "journal-article" @default.
- W2969631037 hasAuthorship W2969631037A5014270925 @default.
- W2969631037 hasAuthorship W2969631037A5045480596 @default.
- W2969631037 hasAuthorship W2969631037A5053680447 @default.
- W2969631037 hasAuthorship W2969631037A5086223111 @default.
- W2969631037 hasBestOaLocation W29696310372 @default.
- W2969631037 hasConcept C107673813 @default.
- W2969631037 hasConcept C154945302 @default.
- W2969631037 hasConcept C15744967 @default.
- W2969631037 hasConcept C2522767166 @default.
- W2969631037 hasConcept C41008148 @default.
- W2969631037 hasConcept C73555534 @default.
- W2969631037 hasConceptScore W2969631037C107673813 @default.
- W2969631037 hasConceptScore W2969631037C154945302 @default.
- W2969631037 hasConceptScore W2969631037C15744967 @default.
- W2969631037 hasConceptScore W2969631037C2522767166 @default.
- W2969631037 hasConceptScore W2969631037C41008148 @default.
- W2969631037 hasConceptScore W2969631037C73555534 @default.
- W2969631037 hasIssue "1" @default.
- W2969631037 hasLocation W29696310371 @default.
- W2969631037 hasLocation W29696310372 @default.
- W2969631037 hasOpenAccess W2969631037 @default.
- W2969631037 hasPrimaryLocation W29696310371 @default.
- W2969631037 hasRelatedWork W2130043461 @default.
- W2969631037 hasRelatedWork W2350741829 @default.
- W2969631037 hasRelatedWork W2358668433 @default.
- W2969631037 hasRelatedWork W2376932109 @default.
- W2969631037 hasRelatedWork W2382290278 @default.
- W2969631037 hasRelatedWork W2390279801 @default.
- W2969631037 hasRelatedWork W2748952813 @default.
- W2969631037 hasRelatedWork W2899084033 @default.
- W2969631037 hasRelatedWork W4304175707 @default.
- W2969631037 hasRelatedWork W2530322880 @default.
- W2969631037 hasVolume "183" @default.
- W2969631037 isParatext "false" @default.
- W2969631037 isRetracted "false" @default.
- W2969631037 magId "2969631037" @default.
- W2969631037 workType "article" @default.