Matches in SemOpenAlex for { <https://semopenalex.org/work/W2969642719> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2969642719 endingPage "918" @default.
- W2969642719 startingPage "899" @default.
- W2969642719 abstract "Investors, researchers and finance practitioners are continuously looking for the best technique that can assist them in accurately predicting the stock markets. The ability to predict stock prices contradicts the efficient market hypothesis (EMH) and can yield substantial monetary rewards for investors. Various stock price prediction techniques are used to predict the stock market and they range from statistical to machine learning methods. Statistical models fall short in handling nonlinear data which characterizes most stock markets. Artificial Neural Networks (ANNs), one of the widely used techniques are able to handle nonlinear data but have low prediction accuracy due to their inability to handle long term dependencies and memory capacity handling. Prediction models that have an ability to learn long-term dependency information are ideal for stock market prediction. The current study uses deep learning techniques, namely, Long Short Term Memory (LSTM), Recurrent Neural Networks (RNNs), Gated Recurrent Units (GRUs), Bidirectional LSTM (BLSTM), Bidirectional RNN (BRNN), Bidirectional GRU (BGRU) to predict stock markets in ten sub-Saharan African countries. The prediction techniques were run on a python 3.5 environment using Theano and Keras libraries. Limited computing capacity was of great concern. However, for the purpose of this study, access to high performance computing facilities was granted in order to run the experiments. Experimental results show that both unidirectional and bidirectional architectures greatly improved prediction accuracy in this research. However, both architectures were found not to be significantly different in predicting the stock markets of the ten African countries. In general, LSTMs followed by BGRUs proved to be the best models in predicting the African stock markets." @default.
- W2969642719 created "2019-08-29" @default.
- W2969642719 creator A5005413640 @default.
- W2969642719 creator A5026570045 @default.
- W2969642719 creator A5081793269 @default.
- W2969642719 date "2019-08-24" @default.
- W2969642719 modified "2023-09-27" @default.
- W2969642719 title "Predicting Emerging and Frontier Stock Markets Using Deep Neural Networks" @default.
- W2969642719 cites W1689711448 @default.
- W2969642719 cites W179875071 @default.
- W2969642719 cites W1965299224 @default.
- W2969642719 cites W1980836123 @default.
- W2969642719 cites W2000920768 @default.
- W2969642719 cites W2006942814 @default.
- W2969642719 cites W2007818806 @default.
- W2969642719 cites W2012079387 @default.
- W2969642719 cites W2025291942 @default.
- W2969642719 cites W2032170121 @default.
- W2969642719 cites W2032550340 @default.
- W2969642719 cites W2033348701 @default.
- W2969642719 cites W2041723890 @default.
- W2969642719 cites W2055503689 @default.
- W2969642719 cites W2079735306 @default.
- W2969642719 cites W2080614264 @default.
- W2969642719 cites W2091621250 @default.
- W2969642719 cites W2118023920 @default.
- W2969642719 cites W2122585011 @default.
- W2969642719 cites W2138293190 @default.
- W2969642719 cites W2164438627 @default.
- W2969642719 cites W2516768646 @default.
- W2969642719 cites W2624385633 @default.
- W2969642719 cites W2776461464 @default.
- W2969642719 cites W2783813266 @default.
- W2969642719 cites W3124185353 @default.
- W2969642719 cites W333233685 @default.
- W2969642719 cites W4231546411 @default.
- W2969642719 doi "https://doi.org/10.1007/978-3-030-29516-5_68" @default.
- W2969642719 hasPublicationYear "2019" @default.
- W2969642719 type Work @default.
- W2969642719 sameAs 2969642719 @default.
- W2969642719 citedByCount "2" @default.
- W2969642719 countsByYear W29696427192019 @default.
- W2969642719 countsByYear W29696427192022 @default.
- W2969642719 crossrefType "book-chapter" @default.
- W2969642719 hasAuthorship W2969642719A5005413640 @default.
- W2969642719 hasAuthorship W2969642719A5026570045 @default.
- W2969642719 hasAuthorship W2969642719A5081793269 @default.
- W2969642719 hasConcept C10138342 @default.
- W2969642719 hasConcept C106159729 @default.
- W2969642719 hasConcept C121087249 @default.
- W2969642719 hasConcept C144133560 @default.
- W2969642719 hasConcept C149782125 @default.
- W2969642719 hasConcept C154945302 @default.
- W2969642719 hasConcept C162324750 @default.
- W2969642719 hasConcept C166957645 @default.
- W2969642719 hasConcept C204036174 @default.
- W2969642719 hasConcept C205649164 @default.
- W2969642719 hasConcept C2778571376 @default.
- W2969642719 hasConcept C2984842247 @default.
- W2969642719 hasConcept C41008148 @default.
- W2969642719 hasConcept C50644808 @default.
- W2969642719 hasConceptScore W2969642719C10138342 @default.
- W2969642719 hasConceptScore W2969642719C106159729 @default.
- W2969642719 hasConceptScore W2969642719C121087249 @default.
- W2969642719 hasConceptScore W2969642719C144133560 @default.
- W2969642719 hasConceptScore W2969642719C149782125 @default.
- W2969642719 hasConceptScore W2969642719C154945302 @default.
- W2969642719 hasConceptScore W2969642719C162324750 @default.
- W2969642719 hasConceptScore W2969642719C166957645 @default.
- W2969642719 hasConceptScore W2969642719C204036174 @default.
- W2969642719 hasConceptScore W2969642719C205649164 @default.
- W2969642719 hasConceptScore W2969642719C2778571376 @default.
- W2969642719 hasConceptScore W2969642719C2984842247 @default.
- W2969642719 hasConceptScore W2969642719C41008148 @default.
- W2969642719 hasConceptScore W2969642719C50644808 @default.
- W2969642719 hasLocation W29696427191 @default.
- W2969642719 hasOpenAccess W2969642719 @default.
- W2969642719 hasPrimaryLocation W29696427191 @default.
- W2969642719 hasRelatedWork W105489434 @default.
- W2969642719 hasRelatedWork W2086849536 @default.
- W2969642719 hasRelatedWork W2130040811 @default.
- W2969642719 hasRelatedWork W2559931233 @default.
- W2969642719 hasRelatedWork W2761990682 @default.
- W2969642719 hasRelatedWork W3108909431 @default.
- W2969642719 hasRelatedWork W3121773312 @default.
- W2969642719 hasRelatedWork W3121794794 @default.
- W2969642719 hasRelatedWork W3124753683 @default.
- W2969642719 hasRelatedWork W578263231 @default.
- W2969642719 isParatext "false" @default.
- W2969642719 isRetracted "false" @default.
- W2969642719 magId "2969642719" @default.
- W2969642719 workType "book-chapter" @default.