Matches in SemOpenAlex for { <https://semopenalex.org/work/W2969673177> ?p ?o ?g. }
- W2969673177 endingPage "106358" @default.
- W2969673177 startingPage "106358" @default.
- W2969673177 abstract "Volcanogenic massive sulfide (VMS) deposits are small targets (100's of meters) hosted in a hectometric to kilometric-scale zoned alteration halo, comprising narrow proximal chlorite and wider distal sericite zones. For exploration, identification of the distal fine-grained sericite halo related to fertile VMS systems is critical but remains challenging. Sericitization is a low-temperature hydrothermal alteration and its geochemical signature could be very similar to clay assemblages produced as the results of simple low-temperature prolonged seawater interaction with volcanic rocks on the seafloor. Currently, classical lithogeochemical methods (e.g., mass balance, element ratios) are not very efficient to decipher sericite alteration related to distal fertile VMS systems. However, semi-volatile metals have good potential as pathfinders, as they have a wider dispersion than major, or trace elements commonly used due to their enhanced mobility in hydrothermal fluids. New analytical improvements, involving four-acid digestion and advanced ICP-MS technology, now allows the accurate determination of semi-volatile metals at the ppb level. Using the Zn-rich McLeod deposit in the Matagami district (Abitibi, Canada) as a case study, we tested first the representativeness and advantage of the new analytical method, and secondly, the capacity of the semi-volatile metals for vectoring exploration. The new method is both accurate and precise and provided good resolution with low detection limits. The performance of classical lithogeochemical methods was compared with semi-volatile metal distribution (As, Se, Cd, In, Sn, Sb, Te, Hg, Tl, Bi) in the footwall rhyolite. Although the classical tools efficiently identified both the proximal chlorite and distal sericite zones, most of them (except Rb/Sr) cannot efficiently vector, as there is no systematic increase or decrease towards the mineralization. Conversely, overlapping alteration halos were identified using semi-volatile metals. The proximal signature (chlorite zone) is characterized by enrichment of Sb, Li ± Mo, W and U. The distal signature (sericite zone) is defined by successive appearance of higher values of Sn, W, and Tl up to 750 m, 1000 m and 1400 m away from the mineralization, respectively. This zoned spatial distribution of semi-volatile metals clearly allows better localization of a given altered sample within a wide and distal alteration halo, thus providing a solid vectoring tool for VMS exploration. This is especially true since the signal of semi-volatile metals extends far beyond both the visual sericite alteration (up to 200 m from mineralization) and classical lithogeochemical tools (up to 1000 m away). Specifically, the Tl/Co ratio records the widest footprint of the mineralization, up to 1400 m away from the deposit. It is well known that Tl is enriched in Zn-rich VMS. Thallium in the sericite alteration halo is here considered as an indicator for discriminating fertile volcanogenic hydrothermal systems from barren low-temperature convective cells." @default.
- W2969673177 created "2019-08-29" @default.
- W2969673177 creator A5057234214 @default.
- W2969673177 creator A5085801724 @default.
- W2969673177 date "2019-12-01" @default.
- W2969673177 modified "2023-10-16" @default.
- W2969673177 title "Use of semi-volatile metals as a new vectoring tool for VMS exploration: Example from the Zn-rich McLeod deposit, Abitibi, Canada" @default.
- W2969673177 cites W1748073762 @default.
- W2969673177 cites W1981512634 @default.
- W2969673177 cites W2000269157 @default.
- W2969673177 cites W2001483833 @default.
- W2969673177 cites W2003107366 @default.
- W2969673177 cites W2004735013 @default.
- W2969673177 cites W2007036174 @default.
- W2969673177 cites W2007443153 @default.
- W2969673177 cites W2007976131 @default.
- W2969673177 cites W2008373173 @default.
- W2969673177 cites W2009407697 @default.
- W2969673177 cites W2009411381 @default.
- W2969673177 cites W2018366877 @default.
- W2969673177 cites W2027372631 @default.
- W2969673177 cites W2033372832 @default.
- W2969673177 cites W2033401826 @default.
- W2969673177 cites W2035915013 @default.
- W2969673177 cites W2036293218 @default.
- W2969673177 cites W2038019149 @default.
- W2969673177 cites W2051775459 @default.
- W2969673177 cites W2054816670 @default.
- W2969673177 cites W2058206594 @default.
- W2969673177 cites W2065151672 @default.
- W2969673177 cites W2067814411 @default.
- W2969673177 cites W2069004587 @default.
- W2969673177 cites W2083960283 @default.
- W2969673177 cites W2084765737 @default.
- W2969673177 cites W2085840506 @default.
- W2969673177 cites W2087251279 @default.
- W2969673177 cites W2096708739 @default.
- W2969673177 cites W2107000364 @default.
- W2969673177 cites W2113137534 @default.
- W2969673177 cites W2116704356 @default.
- W2969673177 cites W2128485715 @default.
- W2969673177 cites W2140080087 @default.
- W2969673177 cites W2144106528 @default.
- W2969673177 cites W2153952174 @default.
- W2969673177 cites W2160704711 @default.
- W2969673177 cites W2161188057 @default.
- W2969673177 cites W2163173796 @default.
- W2969673177 cites W2166873451 @default.
- W2969673177 cites W2171200618 @default.
- W2969673177 cites W2171685504 @default.
- W2969673177 cites W2231608875 @default.
- W2969673177 cites W2334757958 @default.
- W2969673177 cites W2369413345 @default.
- W2969673177 cites W2474127707 @default.
- W2969673177 cites W2529600903 @default.
- W2969673177 cites W2790720123 @default.
- W2969673177 cites W2804158199 @default.
- W2969673177 cites W2810108382 @default.
- W2969673177 cites W2889071520 @default.
- W2969673177 cites W2901954085 @default.
- W2969673177 cites W2916617910 @default.
- W2969673177 cites W2916890824 @default.
- W2969673177 cites W2953235342 @default.
- W2969673177 doi "https://doi.org/10.1016/j.gexplo.2019.106358" @default.
- W2969673177 hasPublicationYear "2019" @default.
- W2969673177 type Work @default.
- W2969673177 sameAs 2969673177 @default.
- W2969673177 citedByCount "7" @default.
- W2969673177 countsByYear W29696731772020 @default.
- W2969673177 countsByYear W29696731772021 @default.
- W2969673177 countsByYear W29696731772022 @default.
- W2969673177 countsByYear W29696731772023 @default.
- W2969673177 crossrefType "journal-article" @default.
- W2969673177 hasAuthorship W2969673177A5057234214 @default.
- W2969673177 hasAuthorship W2969673177A5085801724 @default.
- W2969673177 hasConcept C127313418 @default.
- W2969673177 hasConcept C156622251 @default.
- W2969673177 hasConcept C165205528 @default.
- W2969673177 hasConcept C17409809 @default.
- W2969673177 hasConcept C199289684 @default.
- W2969673177 hasConcept C2778583526 @default.
- W2969673177 hasConcept C34468078 @default.
- W2969673177 hasConcept C66264921 @default.
- W2969673177 hasConceptScore W2969673177C127313418 @default.
- W2969673177 hasConceptScore W2969673177C156622251 @default.
- W2969673177 hasConceptScore W2969673177C165205528 @default.
- W2969673177 hasConceptScore W2969673177C17409809 @default.
- W2969673177 hasConceptScore W2969673177C199289684 @default.
- W2969673177 hasConceptScore W2969673177C2778583526 @default.
- W2969673177 hasConceptScore W2969673177C34468078 @default.
- W2969673177 hasConceptScore W2969673177C66264921 @default.
- W2969673177 hasLocation W29696731771 @default.
- W2969673177 hasOpenAccess W2969673177 @default.
- W2969673177 hasPrimaryLocation W29696731771 @default.
- W2969673177 hasRelatedWork W2383420612 @default.
- W2969673177 hasRelatedWork W2385271310 @default.
- W2969673177 hasRelatedWork W2479815949 @default.
- W2969673177 hasRelatedWork W2605487032 @default.