Matches in SemOpenAlex for { <https://semopenalex.org/work/W2969703002> ?p ?o ?g. }
- W2969703002 endingPage "237" @default.
- W2969703002 startingPage "223" @default.
- W2969703002 abstract "In this paper, we propose a Face Segmentor-Enhanced Network (FSENet) for face recognition to exploit facial localized property. Most existing methods emphasize the holistic characteristics on entire face images, which have limit discriminative ability due to large intra-class variations and inter-class fine-grain. To address this, we present a face segmentor to parse the face into local components and explore their internal correlations, which strengthens the discriminability to discern identities. Specifically, we introduce a semantic parsing module to assign each pixel with a semantic part label. This module generates a set of parsing maps, where each of them represents the pixel-wise occurrence probability of a certain facial component. We then segment facial regions masked by the parsing maps to achieve local features. We further build the structure correlation of facial part features to boost personalized attribute. We finally incorporate holistic and local information to improve the discriminative power of the face descriptor. Extensive experiments on popular public-domain datasets including Labeled Face in the Wild (LFW), Youtube Faces (YTF), IARPA IJB-A, IJB-B and IJB-C, and the MegaFace Challenge show that our method achieves promising performance." @default.
- W2969703002 created "2019-08-29" @default.
- W2969703002 creator A5010357390 @default.
- W2969703002 creator A5032061647 @default.
- W2969703002 creator A5070942821 @default.
- W2969703002 creator A5090079801 @default.
- W2969703002 date "2019-10-01" @default.
- W2969703002 modified "2023-10-16" @default.
- W2969703002 title "Face Segmentor-Enhanced Deep Feature Learning for Face Recognition" @default.
- W2969703002 cites W1796263212 @default.
- W2969703002 cites W1834627138 @default.
- W2969703002 cites W1895390915 @default.
- W2969703002 cites W1921147789 @default.
- W2969703002 cites W1949778830 @default.
- W2969703002 cites W1950843348 @default.
- W2969703002 cites W1951319388 @default.
- W2969703002 cites W1998808035 @default.
- W2969703002 cites W2019464758 @default.
- W2969703002 cites W2024922353 @default.
- W2969703002 cites W2047389622 @default.
- W2969703002 cites W2097117768 @default.
- W2969703002 cites W2145287260 @default.
- W2969703002 cites W2151971489 @default.
- W2969703002 cites W2155893237 @default.
- W2969703002 cites W2163879248 @default.
- W2969703002 cites W2172013424 @default.
- W2969703002 cites W2194775991 @default.
- W2969703002 cites W2275811363 @default.
- W2969703002 cites W2295744361 @default.
- W2969703002 cites W2304348237 @default.
- W2969703002 cites W2307523691 @default.
- W2969703002 cites W2307770531 @default.
- W2969703002 cites W2335787378 @default.
- W2969703002 cites W2441198140 @default.
- W2969703002 cites W2464026376 @default.
- W2969703002 cites W2480418144 @default.
- W2969703002 cites W2515770085 @default.
- W2969703002 cites W2520774990 @default.
- W2969703002 cites W2548780814 @default.
- W2969703002 cites W2592903734 @default.
- W2969703002 cites W2605359214 @default.
- W2969703002 cites W2679426462 @default.
- W2969703002 cites W2736633948 @default.
- W2969703002 cites W2737608545 @default.
- W2969703002 cites W2743674619 @default.
- W2969703002 cites W2752782242 @default.
- W2969703002 cites W2781292787 @default.
- W2969703002 cites W2871667416 @default.
- W2969703002 cites W2882991827 @default.
- W2969703002 cites W2897196088 @default.
- W2969703002 cites W2904324197 @default.
- W2969703002 cites W2912376035 @default.
- W2969703002 cites W2949386440 @default.
- W2969703002 cites W2962725301 @default.
- W2969703002 cites W2962898354 @default.
- W2969703002 cites W2963285502 @default.
- W2969703002 cites W2963460857 @default.
- W2969703002 cites W2963466847 @default.
- W2969703002 cites W2963559058 @default.
- W2969703002 cites W2963570419 @default.
- W2969703002 cites W2963671154 @default.
- W2969703002 cites W2963676087 @default.
- W2969703002 cites W2963839617 @default.
- W2969703002 cites W2963963898 @default.
- W2969703002 cites W2964171387 @default.
- W2969703002 cites W3099206234 @default.
- W2969703002 cites W3101036461 @default.
- W2969703002 cites W3101998545 @default.
- W2969703002 doi "https://doi.org/10.1109/tbiom.2019.2936624" @default.
- W2969703002 hasPublicationYear "2019" @default.
- W2969703002 type Work @default.
- W2969703002 sameAs 2969703002 @default.
- W2969703002 citedByCount "10" @default.
- W2969703002 countsByYear W29697030022020 @default.
- W2969703002 countsByYear W29697030022021 @default.
- W2969703002 countsByYear W29697030022022 @default.
- W2969703002 countsByYear W29697030022023 @default.
- W2969703002 crossrefType "journal-article" @default.
- W2969703002 hasAuthorship W2969703002A5010357390 @default.
- W2969703002 hasAuthorship W2969703002A5032061647 @default.
- W2969703002 hasAuthorship W2969703002A5070942821 @default.
- W2969703002 hasAuthorship W2969703002A5090079801 @default.
- W2969703002 hasConcept C138885662 @default.
- W2969703002 hasConcept C144024400 @default.
- W2969703002 hasConcept C153180895 @default.
- W2969703002 hasConcept C154945302 @default.
- W2969703002 hasConcept C160633673 @default.
- W2969703002 hasConcept C186644900 @default.
- W2969703002 hasConcept C2776401178 @default.
- W2969703002 hasConcept C2779304628 @default.
- W2969703002 hasConcept C31510193 @default.
- W2969703002 hasConcept C31972630 @default.
- W2969703002 hasConcept C36289849 @default.
- W2969703002 hasConcept C41008148 @default.
- W2969703002 hasConcept C41895202 @default.
- W2969703002 hasConcept C52622490 @default.
- W2969703002 hasConcept C97931131 @default.
- W2969703002 hasConceptScore W2969703002C138885662 @default.