Matches in SemOpenAlex for { <https://semopenalex.org/work/W2969757910> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2969757910 endingPage "012011" @default.
- W2969757910 startingPage "012011" @default.
- W2969757910 abstract "Abrasive waterjet cutting is one of the unconventional methods used to cut some of the difficult to cut materials. In certain materials this method has proved to give better results compared to the conventional methods. In this model the water jet cutting is done on hastelloy using the three parameters which are abrasive mass flow rate, traverse speed, and the stand-off distance. The mathematical modelling to predict the kerf width based on these three input parameters is discussed in this paper. As the relation between the input and the output parameter is non-linear in nature neural network back propagation algorithm is used for the prediction. Here the experiment is conducted using waterjet cutting machine and the data's like surface roughness, metal removal rate, kerf width and the kerf angle data are collected. Both the input and the output parameters are fed to the neural network toolbox programmed in the MATLAB. After 1000 iterations it has been found that the prediction is closer to the actual value. The mathematical constants which is the weight matrix is used to test the new set of data for accuracy. It has been found that the prediction is more accurate compared to the conventional methods. This experiment is based Taguch's design which uses the above three parameters to cut the material. This paper also discusses on the predication of surface roughness of hastelloy created due to the variation in these parameters." @default.
- W2969757910 created "2019-08-29" @default.
- W2969757910 creator A5023858701 @default.
- W2969757910 creator A5042691697 @default.
- W2969757910 creator A5055477441 @default.
- W2969757910 date "2019-08-01" @default.
- W2969757910 modified "2023-09-26" @default.
- W2969757910 title "Predication of Kerf Width and Surface Roughness in Waterjet Cutting using Neural Networks" @default.
- W2969757910 cites W1967993201 @default.
- W2969757910 cites W2801080190 @default.
- W2969757910 doi "https://doi.org/10.1088/1742-6596/1276/1/012011" @default.
- W2969757910 hasPublicationYear "2019" @default.
- W2969757910 type Work @default.
- W2969757910 sameAs 2969757910 @default.
- W2969757910 citedByCount "0" @default.
- W2969757910 crossrefType "journal-article" @default.
- W2969757910 hasAuthorship W2969757910A5023858701 @default.
- W2969757910 hasAuthorship W2969757910A5042691697 @default.
- W2969757910 hasAuthorship W2969757910A5055477441 @default.
- W2969757910 hasBestOaLocation W29697579101 @default.
- W2969757910 hasConcept C107365816 @default.
- W2969757910 hasConcept C11413529 @default.
- W2969757910 hasConcept C127313418 @default.
- W2969757910 hasConcept C127413603 @default.
- W2969757910 hasConcept C13280743 @default.
- W2969757910 hasConcept C154945302 @default.
- W2969757910 hasConcept C159985019 @default.
- W2969757910 hasConcept C176809094 @default.
- W2969757910 hasConcept C191897082 @default.
- W2969757910 hasConcept C192562407 @default.
- W2969757910 hasConcept C2780957350 @default.
- W2969757910 hasConcept C41008148 @default.
- W2969757910 hasConcept C50644808 @default.
- W2969757910 hasConcept C523214423 @default.
- W2969757910 hasConcept C71039073 @default.
- W2969757910 hasConcept C78519656 @default.
- W2969757910 hasConceptScore W2969757910C107365816 @default.
- W2969757910 hasConceptScore W2969757910C11413529 @default.
- W2969757910 hasConceptScore W2969757910C127313418 @default.
- W2969757910 hasConceptScore W2969757910C127413603 @default.
- W2969757910 hasConceptScore W2969757910C13280743 @default.
- W2969757910 hasConceptScore W2969757910C154945302 @default.
- W2969757910 hasConceptScore W2969757910C159985019 @default.
- W2969757910 hasConceptScore W2969757910C176809094 @default.
- W2969757910 hasConceptScore W2969757910C191897082 @default.
- W2969757910 hasConceptScore W2969757910C192562407 @default.
- W2969757910 hasConceptScore W2969757910C2780957350 @default.
- W2969757910 hasConceptScore W2969757910C41008148 @default.
- W2969757910 hasConceptScore W2969757910C50644808 @default.
- W2969757910 hasConceptScore W2969757910C523214423 @default.
- W2969757910 hasConceptScore W2969757910C71039073 @default.
- W2969757910 hasConceptScore W2969757910C78519656 @default.
- W2969757910 hasLocation W29697579101 @default.
- W2969757910 hasOpenAccess W2969757910 @default.
- W2969757910 hasPrimaryLocation W29697579101 @default.
- W2969757910 hasRelatedWork W193907477 @default.
- W2969757910 hasRelatedWork W2044286870 @default.
- W2969757910 hasRelatedWork W2049564387 @default.
- W2969757910 hasRelatedWork W2238203388 @default.
- W2969757910 hasRelatedWork W2364121375 @default.
- W2969757910 hasRelatedWork W2378455986 @default.
- W2969757910 hasRelatedWork W2991313324 @default.
- W2969757910 hasRelatedWork W2992206500 @default.
- W2969757910 hasRelatedWork W3160204073 @default.
- W2969757910 hasRelatedWork W3172266713 @default.
- W2969757910 hasVolume "1276" @default.
- W2969757910 isParatext "false" @default.
- W2969757910 isRetracted "false" @default.
- W2969757910 magId "2969757910" @default.
- W2969757910 workType "article" @default.