Matches in SemOpenAlex for { <https://semopenalex.org/work/W2969761002> ?p ?o ?g. }
- W2969761002 endingPage "795" @default.
- W2969761002 startingPage "786" @default.
- W2969761002 abstract "Long non-coding RNA (lncRNA) play critical roles in the occurrence and development of various diseases. The determination of the lncRNA-disease associations thus would contribute to provide new insights into the pathogenesis of the disease, the diagnosis, and the gene treatments. Considering that traditional experimental approaches are difficult to detect potential human lncRNA-disease associations from the vast amount of biological data, developing computational method could be of significant value. In this paper, we proposed a novel computational method named LDASR to identify associations between lncRNA and disease by analyzing known lncRNA-disease associations. First, the feature vectors of the lncRNA-disease pairs were obtained by integrating lncRNA Gaussian interaction profile kernel similarity, disease semantic similarity, and Gaussian interaction profile kernel similarity. Second, autoencoder neural network was employed to reduce the feature dimension and get the optimal feature subspace from the original feature set. Finally, Rotating Forest was used to carry out prediction of lncRNA-disease association. The proposed method achieves an excellent preference with 0.9502 AUC in leave-one-out cross-validations (LOOCV) and 0.9428 AUC in 5-fold cross-validation, which significantly outperformed previous methods. Moreover, two kinds of case studies on identifying lncRNAs associated with colorectal cancer and glioma further proves the capability of LDASR in identifying novel lncRNA-disease associations. The promising experimental results show that the LDASR can be an excellent addition to the biomedical research in the future." @default.
- W2969761002 created "2019-08-29" @default.
- W2969761002 creator A5014121271 @default.
- W2969761002 creator A5019805735 @default.
- W2969761002 creator A5082017081 @default.
- W2969761002 creator A5086830192 @default.
- W2969761002 creator A5090507572 @default.
- W2969761002 date "2019-09-01" @default.
- W2969761002 modified "2023-10-16" @default.
- W2969761002 title "A Learning-Based Method for LncRNA-Disease Association Identification Combing Similarity Information and Rotation Forest" @default.
- W2969761002 cites W135465590 @default.
- W2969761002 cites W1973330264 @default.
- W2969761002 cites W2000833392 @default.
- W2969761002 cites W2008491586 @default.
- W2969761002 cites W2017519440 @default.
- W2969761002 cites W2057094700 @default.
- W2969761002 cites W2073136316 @default.
- W2969761002 cites W2073278656 @default.
- W2969761002 cites W2093303548 @default.
- W2969761002 cites W2102364475 @default.
- W2969761002 cites W2109100311 @default.
- W2969761002 cites W2113868616 @default.
- W2969761002 cites W2140222552 @default.
- W2969761002 cites W2142019735 @default.
- W2969761002 cites W2152970345 @default.
- W2969761002 cites W2169777381 @default.
- W2969761002 cites W2512308096 @default.
- W2969761002 cites W2531500048 @default.
- W2969761002 cites W2601934706 @default.
- W2969761002 cites W2659689178 @default.
- W2969761002 cites W2736879312 @default.
- W2969761002 cites W2737264786 @default.
- W2969761002 cites W2756150334 @default.
- W2969761002 cites W2765372324 @default.
- W2969761002 cites W2772618228 @default.
- W2969761002 cites W2781723573 @default.
- W2969761002 cites W2793492272 @default.
- W2969761002 cites W2801501532 @default.
- W2969761002 cites W2907584383 @default.
- W2969761002 cites W611910056 @default.
- W2969761002 doi "https://doi.org/10.1016/j.isci.2019.08.030" @default.
- W2969761002 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6733997" @default.
- W2969761002 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31494494" @default.
- W2969761002 hasPublicationYear "2019" @default.
- W2969761002 type Work @default.
- W2969761002 sameAs 2969761002 @default.
- W2969761002 citedByCount "62" @default.
- W2969761002 countsByYear W29697610022019 @default.
- W2969761002 countsByYear W29697610022020 @default.
- W2969761002 countsByYear W29697610022021 @default.
- W2969761002 countsByYear W29697610022022 @default.
- W2969761002 countsByYear W29697610022023 @default.
- W2969761002 crossrefType "journal-article" @default.
- W2969761002 hasAuthorship W2969761002A5014121271 @default.
- W2969761002 hasAuthorship W2969761002A5019805735 @default.
- W2969761002 hasAuthorship W2969761002A5082017081 @default.
- W2969761002 hasAuthorship W2969761002A5086830192 @default.
- W2969761002 hasAuthorship W2969761002A5090507572 @default.
- W2969761002 hasBestOaLocation W29697610021 @default.
- W2969761002 hasConcept C101738243 @default.
- W2969761002 hasConcept C103278499 @default.
- W2969761002 hasConcept C114614502 @default.
- W2969761002 hasConcept C115961682 @default.
- W2969761002 hasConcept C119857082 @default.
- W2969761002 hasConcept C124101348 @default.
- W2969761002 hasConcept C130318100 @default.
- W2969761002 hasConcept C138885662 @default.
- W2969761002 hasConcept C142724271 @default.
- W2969761002 hasConcept C153180895 @default.
- W2969761002 hasConcept C154945302 @default.
- W2969761002 hasConcept C169258074 @default.
- W2969761002 hasConcept C2776401178 @default.
- W2969761002 hasConcept C2779134260 @default.
- W2969761002 hasConcept C33923547 @default.
- W2969761002 hasConcept C41008148 @default.
- W2969761002 hasConcept C41895202 @default.
- W2969761002 hasConcept C50644808 @default.
- W2969761002 hasConcept C59404180 @default.
- W2969761002 hasConcept C60644358 @default.
- W2969761002 hasConcept C70721500 @default.
- W2969761002 hasConcept C71924100 @default.
- W2969761002 hasConcept C74193536 @default.
- W2969761002 hasConcept C86803240 @default.
- W2969761002 hasConceptScore W2969761002C101738243 @default.
- W2969761002 hasConceptScore W2969761002C103278499 @default.
- W2969761002 hasConceptScore W2969761002C114614502 @default.
- W2969761002 hasConceptScore W2969761002C115961682 @default.
- W2969761002 hasConceptScore W2969761002C119857082 @default.
- W2969761002 hasConceptScore W2969761002C124101348 @default.
- W2969761002 hasConceptScore W2969761002C130318100 @default.
- W2969761002 hasConceptScore W2969761002C138885662 @default.
- W2969761002 hasConceptScore W2969761002C142724271 @default.
- W2969761002 hasConceptScore W2969761002C153180895 @default.
- W2969761002 hasConceptScore W2969761002C154945302 @default.
- W2969761002 hasConceptScore W2969761002C169258074 @default.
- W2969761002 hasConceptScore W2969761002C2776401178 @default.
- W2969761002 hasConceptScore W2969761002C2779134260 @default.
- W2969761002 hasConceptScore W2969761002C33923547 @default.