Matches in SemOpenAlex for { <https://semopenalex.org/work/W2969790438> ?p ?o ?g. }
- W2969790438 endingPage "103021" @default.
- W2969790438 startingPage "103021" @default.
- W2969790438 abstract "Leaf nitrogen is an indispensable parameter for simulating biogeochemical cycling in ecosystems. However, detailed information about leaf nitrogen of rubber trees (Hevea brasiliensis) in the tropical regions is rare. Aims of the current study were to determine the feature bands of foliar nitrogen of rubber trees and to examine the ability of these bands to estimate leaf nitrogen concentration (LNC). In this work, a hybrid variable selection method namely competitive adaptive reweighted sampling (CARS) combined with successive projections algorithm (SPA) (CARS-SPA) was used to extract feature bands for predicting LNC of rubber trees. Two hundred leaf samples were gathered from five fields through April to November (tapping season) in 2014. These samples were divided into calibration dataset (n = 140) and prediction dataset (n = 60) using the Kennard-Stone algorithm. Sixty bands were determined from the first derivative spectrum using the CARS-SPA. Among these bands, not only the commonly used absorption features of chlorophyll, protein, and the red edge position were included, but also those of starch, cellulose, and lignin were selected. All the 60 bands were used as input variables for the partial least squares regression (PLSR) and artificial neural networks (ANN) models to estimate LNC of rubber trees. The determination coefficient of calibration (rc2) and prediction (rp2), and root mean square error of calibration (RMSEC) and prediction (RMSEP), as well as normalized RMSEC (nRMSEC) and normalized RMSEP (nRMSEP) were employed to evaluate performances of these models. Results indicated that CARS-SPA-ANN (rc2 = 0.82, RMSEC = 0.24%, nRMSEC = 7.76%; rp2 = 0.78, RMSEP = 0.22%, nRMSEP = 6.73%) outperformed the other selected models except CARS-PLSR (rc2 = 0.91, RMSEC = 0.17%, nRMSEC = 5.46%; rp2 = 0.80, RMSEP = 0.21%, nRMSECP = 6.44%). However, CARS-SPA-ANN contained much less bands and was more stable than CARS-PLSR. In conclusion, hyperspectral feature bands in combination with ANN could accurately and robustly estimate LNC of rubber trees." @default.
- W2969790438 created "2019-08-29" @default.
- W2969790438 creator A5010180547 @default.
- W2969790438 creator A5061405661 @default.
- W2969790438 creator A5066935348 @default.
- W2969790438 creator A5080279582 @default.
- W2969790438 date "2019-11-01" @default.
- W2969790438 modified "2023-09-26" @default.
- W2969790438 title "Estimation of foliar nitrogen of rubber trees using hyperspectral reflectance with feature bands" @default.
- W2969790438 cites W1563499965 @default.
- W2969790438 cites W1683383071 @default.
- W2969790438 cites W1966579847 @default.
- W2969790438 cites W1968894504 @default.
- W2969790438 cites W1971838942 @default.
- W2969790438 cites W1972600584 @default.
- W2969790438 cites W1974416151 @default.
- W2969790438 cites W1976317923 @default.
- W2969790438 cites W1978366487 @default.
- W2969790438 cites W1978890507 @default.
- W2969790438 cites W1979129127 @default.
- W2969790438 cites W1982755765 @default.
- W2969790438 cites W1988233512 @default.
- W2969790438 cites W1991230437 @default.
- W2969790438 cites W1996742811 @default.
- W2969790438 cites W1997270149 @default.
- W2969790438 cites W2000956428 @default.
- W2969790438 cites W2002016471 @default.
- W2969790438 cites W2002156658 @default.
- W2969790438 cites W2007808016 @default.
- W2969790438 cites W2010797000 @default.
- W2969790438 cites W2012358846 @default.
- W2969790438 cites W2014450578 @default.
- W2969790438 cites W2015870870 @default.
- W2969790438 cites W2016090370 @default.
- W2969790438 cites W2017422910 @default.
- W2969790438 cites W2019144955 @default.
- W2969790438 cites W2034709171 @default.
- W2969790438 cites W2036416700 @default.
- W2969790438 cites W2043689097 @default.
- W2969790438 cites W2046404820 @default.
- W2969790438 cites W2046511834 @default.
- W2969790438 cites W2051011878 @default.
- W2969790438 cites W2057985612 @default.
- W2969790438 cites W2071603392 @default.
- W2969790438 cites W2071881814 @default.
- W2969790438 cites W2083979626 @default.
- W2969790438 cites W2084169316 @default.
- W2969790438 cites W2084275133 @default.
- W2969790438 cites W2084602460 @default.
- W2969790438 cites W2086190838 @default.
- W2969790438 cites W2086406258 @default.
- W2969790438 cites W2091213485 @default.
- W2969790438 cites W2091740668 @default.
- W2969790438 cites W2100507486 @default.
- W2969790438 cites W2112732795 @default.
- W2969790438 cites W2115615525 @default.
- W2969790438 cites W2131491732 @default.
- W2969790438 cites W2134756779 @default.
- W2969790438 cites W2146989274 @default.
- W2969790438 cites W2148065061 @default.
- W2969790438 cites W2149817684 @default.
- W2969790438 cites W2156976401 @default.
- W2969790438 cites W2161509783 @default.
- W2969790438 cites W2162995092 @default.
- W2969790438 cites W2166660987 @default.
- W2969790438 cites W2266690409 @default.
- W2969790438 cites W2275931631 @default.
- W2969790438 cites W2313541398 @default.
- W2969790438 cites W2507406410 @default.
- W2969790438 cites W2528721565 @default.
- W2969790438 cites W2584675692 @default.
- W2969790438 cites W2604941801 @default.
- W2969790438 cites W2608201173 @default.
- W2969790438 cites W2743327777 @default.
- W2969790438 cites W2746109604 @default.
- W2969790438 cites W2792216026 @default.
- W2969790438 cites W2793599628 @default.
- W2969790438 cites W2895438178 @default.
- W2969790438 doi "https://doi.org/10.1016/j.infrared.2019.103021" @default.
- W2969790438 hasPublicationYear "2019" @default.
- W2969790438 type Work @default.
- W2969790438 sameAs 2969790438 @default.
- W2969790438 citedByCount "9" @default.
- W2969790438 countsByYear W29697904382020 @default.
- W2969790438 countsByYear W29697904382021 @default.
- W2969790438 countsByYear W29697904382022 @default.
- W2969790438 countsByYear W29697904382023 @default.
- W2969790438 crossrefType "journal-article" @default.
- W2969790438 hasAuthorship W2969790438A5010180547 @default.
- W2969790438 hasAuthorship W2969790438A5061405661 @default.
- W2969790438 hasAuthorship W2969790438A5066935348 @default.
- W2969790438 hasAuthorship W2969790438A5080279582 @default.
- W2969790438 hasConcept C105795698 @default.
- W2969790438 hasConcept C139945424 @default.
- W2969790438 hasConcept C148483581 @default.
- W2969790438 hasConcept C154945302 @default.
- W2969790438 hasConcept C159078339 @default.
- W2969790438 hasConcept C159985019 @default.