Matches in SemOpenAlex for { <https://semopenalex.org/work/W2969795864> ?p ?o ?g. }
- W2969795864 endingPage "126" @default.
- W2969795864 startingPage "117" @default.
- W2969795864 abstract "Inferring hidden structure from noisy observations is a problem addressed by Bayesian statistical learning, which aims to identify optimal models of the process that generated the observations given assumptions that constrain the space of potential solutions. Animals and machines face similar model-selection problems to infer latent properties and predict future states of the world. Here we review recent attempts to explain how intelligent agents address these challenges and how their solutions relate to Bayesian principles. We focus on how constraints on available information and resources affect inference and propose a general framework that uses benefit(accuracy) and accuracy(cost) curves to assess optimality under these constraints." @default.
- W2969795864 created "2019-08-29" @default.
- W2969795864 creator A5029363341 @default.
- W2969795864 creator A5064531912 @default.
- W2969795864 creator A5087496784 @default.
- W2969795864 date "2019-10-01" @default.
- W2969795864 modified "2023-09-25" @default.
- W2969795864 title "What is optimal in optimal inference?" @default.
- W2969795864 cites W1542200596 @default.
- W2969795864 cites W1825859627 @default.
- W2969795864 cites W1867700327 @default.
- W2969795864 cites W1869260116 @default.
- W2969795864 cites W1891847548 @default.
- W2969795864 cites W1892018222 @default.
- W2969795864 cites W1899637700 @default.
- W2969795864 cites W1915024344 @default.
- W2969795864 cites W1974857120 @default.
- W2969795864 cites W1989388297 @default.
- W2969795864 cites W1990231801 @default.
- W2969795864 cites W1991485860 @default.
- W2969795864 cites W1993755070 @default.
- W2969795864 cites W1999331178 @default.
- W2969795864 cites W2004914209 @default.
- W2969795864 cites W2008497075 @default.
- W2969795864 cites W2016429292 @default.
- W2969795864 cites W2030194104 @default.
- W2969795864 cites W2034375586 @default.
- W2969795864 cites W2041919000 @default.
- W2969795864 cites W2042880323 @default.
- W2969795864 cites W2044320213 @default.
- W2969795864 cites W2048269309 @default.
- W2969795864 cites W2052398297 @default.
- W2969795864 cites W2053033682 @default.
- W2969795864 cites W2064039476 @default.
- W2969795864 cites W2066931620 @default.
- W2969795864 cites W2084221733 @default.
- W2969795864 cites W2096016260 @default.
- W2969795864 cites W2097382951 @default.
- W2969795864 cites W2101692583 @default.
- W2969795864 cites W2105041994 @default.
- W2969795864 cites W2106478918 @default.
- W2969795864 cites W2112271657 @default.
- W2969795864 cites W2116311105 @default.
- W2969795864 cites W2123429050 @default.
- W2969795864 cites W2123935904 @default.
- W2969795864 cites W2124641450 @default.
- W2969795864 cites W2128221441 @default.
- W2969795864 cites W2134539142 @default.
- W2969795864 cites W2139295975 @default.
- W2969795864 cites W2144095870 @default.
- W2969795864 cites W2144108520 @default.
- W2969795864 cites W2152497905 @default.
- W2969795864 cites W2153062702 @default.
- W2969795864 cites W2157201325 @default.
- W2969795864 cites W2160649823 @default.
- W2969795864 cites W2161689902 @default.
- W2969795864 cites W2165082320 @default.
- W2969795864 cites W2169966170 @default.
- W2969795864 cites W2171056452 @default.
- W2969795864 cites W2171521317 @default.
- W2969795864 cites W2288006236 @default.
- W2969795864 cites W2298102808 @default.
- W2969795864 cites W2342077314 @default.
- W2969795864 cites W2400259604 @default.
- W2969795864 cites W2416094133 @default.
- W2969795864 cites W2481968612 @default.
- W2969795864 cites W2507118341 @default.
- W2969795864 cites W2541895270 @default.
- W2969795864 cites W2568421828 @default.
- W2969795864 cites W2601077574 @default.
- W2969795864 cites W2652938196 @default.
- W2969795864 cites W2724979507 @default.
- W2969795864 cites W2734810719 @default.
- W2969795864 cites W2738838016 @default.
- W2969795864 cites W2790916085 @default.
- W2969795864 cites W2792134955 @default.
- W2969795864 cites W2793373321 @default.
- W2969795864 cites W2796625795 @default.
- W2969795864 cites W2808739938 @default.
- W2969795864 cites W2809762926 @default.
- W2969795864 cites W2951395956 @default.
- W2969795864 cites W2953132780 @default.
- W2969795864 cites W2963690607 @default.
- W2969795864 cites W2964250984 @default.
- W2969795864 cites W2964325055 @default.
- W2969795864 cites W2292121580 @default.
- W2969795864 doi "https://doi.org/10.1016/j.cobeha.2019.07.008" @default.
- W2969795864 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7441787" @default.
- W2969795864 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32832585" @default.
- W2969795864 hasPublicationYear "2019" @default.
- W2969795864 type Work @default.
- W2969795864 sameAs 2969795864 @default.
- W2969795864 citedByCount "10" @default.
- W2969795864 countsByYear W29697958642020 @default.
- W2969795864 countsByYear W29697958642021 @default.
- W2969795864 countsByYear W29697958642022 @default.
- W2969795864 countsByYear W29697958642023 @default.
- W2969795864 crossrefType "journal-article" @default.