Matches in SemOpenAlex for { <https://semopenalex.org/work/W2969808436> ?p ?o ?g. }
- W2969808436 abstract "This chapter presents the investigations and the results of feature learning using convolutional neural networks to automatically assess knee osteoarthritis (OA) severity and the associated clinical and diagnostic features of knee OA from X-ray images. Also, this chapter demonstrates that feature learning in a supervised manner is more effective than using conventional handcrafted features for automatic detection of knee joints and fine-grained knee OA image classification. In the general machine learning approach to automatically assess knee OA severity, the first step is to localize the region of interest that is to detect and extract the knee joint regions from the radiographs, and the next step is to classify the localized knee joints based on a radiographic classification scheme such as Kellgren and Lawrence grades. First, the existing approaches for detecting (or localizing) the knee joint regions based on handcrafted features are reviewed and outlined. Next, three new approaches are introduced: 1) to automatically detect the knee joint region using a fully convolutional network, 2) to automatically assess the radiographic knee OA using CNNs trained from scratch for classification and regression of knee joint images to predict KL grades in ordinal and continuous scales, and 3) to quantify the knee OA severity optimizing a weighted ratio of two loss functions: categorical cross entropy and mean-squared error using multi-objective convolutional learning and ordinal regression. Two public datasets: the OAI and the MOST are used to evaluate the approaches with promising results that outperform existing approaches. In summary, this work primarily contributes to the field of automated methods for localization (automatic detection) and quantification (image classification) of radiographic knee OA." @default.
- W2969808436 created "2019-08-29" @default.
- W2969808436 creator A5017965675 @default.
- W2969808436 creator A5027214933 @default.
- W2969808436 creator A5053659647 @default.
- W2969808436 creator A5073924795 @default.
- W2969808436 date "2019-08-23" @default.
- W2969808436 modified "2023-09-24" @default.
- W2969808436 title "Feature Learning to Automatically Assess Radiographic Knee Osteoarthritis Severity" @default.
- W2969808436 cites W1436524517 @default.
- W2969808436 cites W1533861849 @default.
- W2969808436 cites W156779288 @default.
- W2969808436 cites W1686810756 @default.
- W2969808436 cites W1705995708 @default.
- W2969808436 cites W1878638972 @default.
- W2969808436 cites W1884191083 @default.
- W2969808436 cites W1903029394 @default.
- W2969808436 cites W1905033729 @default.
- W2969808436 cites W1915761309 @default.
- W2969808436 cites W1967170359 @default.
- W2969808436 cites W1972552638 @default.
- W2969808436 cites W1988445395 @default.
- W2969808436 cites W1992691752 @default.
- W2969808436 cites W1995137807 @default.
- W2969808436 cites W2006609734 @default.
- W2969808436 cites W2008260897 @default.
- W2969808436 cites W2033519774 @default.
- W2969808436 cites W2039674507 @default.
- W2969808436 cites W2042671010 @default.
- W2969808436 cites W2044465660 @default.
- W2969808436 cites W2049737684 @default.
- W2969808436 cites W2058333183 @default.
- W2969808436 cites W2060173776 @default.
- W2969808436 cites W2067794541 @default.
- W2969808436 cites W2068730032 @default.
- W2969808436 cites W2081714290 @default.
- W2969808436 cites W2082526668 @default.
- W2969808436 cites W2085225542 @default.
- W2969808436 cites W2086936614 @default.
- W2969808436 cites W2096127742 @default.
- W2969808436 cites W2105868855 @default.
- W2969808436 cites W2117539524 @default.
- W2969808436 cites W2118585731 @default.
- W2969808436 cites W2121608866 @default.
- W2969808436 cites W2132241724 @default.
- W2969808436 cites W2134246098 @default.
- W2969808436 cites W2136391815 @default.
- W2969808436 cites W2144598092 @default.
- W2969808436 cites W2149128484 @default.
- W2969808436 cites W2149496581 @default.
- W2969808436 cites W2149933564 @default.
- W2969808436 cites W2155893237 @default.
- W2969808436 cites W2158778629 @default.
- W2969808436 cites W2159988341 @default.
- W2969808436 cites W2161969291 @default.
- W2969808436 cites W2163352848 @default.
- W2969808436 cites W2163605009 @default.
- W2969808436 cites W2165879419 @default.
- W2969808436 cites W2167510172 @default.
- W2969808436 cites W2184596094 @default.
- W2969808436 cites W2188119724 @default.
- W2969808436 cites W2190044943 @default.
- W2969808436 cites W2273468036 @default.
- W2969808436 cites W2321335586 @default.
- W2969808436 cites W2331434488 @default.
- W2969808436 cites W2473223867 @default.
- W2969808436 cites W2513775135 @default.
- W2969808436 cites W2520720102 @default.
- W2969808436 cites W2521048164 @default.
- W2969808436 cites W2533800772 @default.
- W2969808436 cites W2546410677 @default.
- W2969808436 cites W2560046091 @default.
- W2969808436 cites W2578877523 @default.
- W2969808436 cites W2584226844 @default.
- W2969808436 cites W2586506233 @default.
- W2969808436 cites W2592329056 @default.
- W2969808436 cites W2592929672 @default.
- W2969808436 cites W2598979078 @default.
- W2969808436 cites W2604759322 @default.
- W2969808436 cites W2937996563 @default.
- W2969808436 cites W2962883796 @default.
- W2969808436 cites W2962914239 @default.
- W2969808436 cites W2963173190 @default.
- W2969808436 cites W2963202012 @default.
- W2969808436 cites W2963343251 @default.
- W2969808436 cites W2963406602 @default.
- W2969808436 cites W2963565427 @default.
- W2969808436 cites W3100175985 @default.
- W2969808436 cites W1985396457 @default.
- W2969808436 hasPublicationYear "2019" @default.
- W2969808436 type Work @default.
- W2969808436 sameAs 2969808436 @default.
- W2969808436 citedByCount "0" @default.
- W2969808436 crossrefType "posted-content" @default.
- W2969808436 hasAuthorship W2969808436A5017965675 @default.
- W2969808436 hasAuthorship W2969808436A5027214933 @default.
- W2969808436 hasAuthorship W2969808436A5053659647 @default.
- W2969808436 hasAuthorship W2969808436A5073924795 @default.
- W2969808436 hasConcept C108583219 @default.
- W2969808436 hasConcept C110313322 @default.