Matches in SemOpenAlex for { <https://semopenalex.org/work/W2969812797> ?p ?o ?g. }
- W2969812797 endingPage "102799" @default.
- W2969812797 startingPage "102799" @default.
- W2969812797 abstract "Many videos depict people, and it is their interactions that inform us of their activities, relation to one another and the cultural and social setting. With advances in human action recognition, researchers have begun to address the automated recognition of these human-human interactions from video. The main challenges stem from dealing with the considerable variation in recording setting, the appearance of the people depicted and the coordinated performance of their interaction. This survey provides a summary of these challenges and datasets to address these, followed by an in-depth discussion of relevant vision-based recognition and detection methods. We focus on recent, promising work based on deep learning and convolutional neural networks (CNNs). Finally, we outline directions to overcome the limitations of the current state-of-the-art to analyze and, eventually, understand social human actions." @default.
- W2969812797 created "2019-08-29" @default.
- W2969812797 creator A5046369742 @default.
- W2969812797 creator A5087762753 @default.
- W2969812797 date "2019-11-01" @default.
- W2969812797 modified "2023-10-18" @default.
- W2969812797 title "Analyzing human–human interactions: A survey" @default.
- W2969812797 cites W1166092290 @default.
- W2969812797 cites W1571434535 @default.
- W2969812797 cites W1972696612 @default.
- W2969812797 cites W1979545636 @default.
- W2969812797 cites W1981781955 @default.
- W2969812797 cites W1983364832 @default.
- W2969812797 cites W2001773889 @default.
- W2969812797 cites W2003708924 @default.
- W2969812797 cites W2007307031 @default.
- W2969812797 cites W2017099933 @default.
- W2969812797 cites W2034920727 @default.
- W2969812797 cites W2047499569 @default.
- W2969812797 cites W2060280062 @default.
- W2969812797 cites W2060561057 @default.
- W2969812797 cites W2064675550 @default.
- W2969812797 cites W2098528528 @default.
- W2969812797 cites W2100686575 @default.
- W2969812797 cites W2106996050 @default.
- W2969812797 cites W2112796928 @default.
- W2969812797 cites W2130122588 @default.
- W2969812797 cites W2158169396 @default.
- W2969812797 cites W2165698076 @default.
- W2969812797 cites W2168356304 @default.
- W2969812797 cites W2292288263 @default.
- W2969812797 cites W2395579298 @default.
- W2969812797 cites W2503931548 @default.
- W2969812797 cites W2510392475 @default.
- W2969812797 cites W2622398900 @default.
- W2969812797 cites W2755624598 @default.
- W2969812797 cites W2789500342 @default.
- W2969812797 cites W2791307013 @default.
- W2969812797 cites W2791369416 @default.
- W2969812797 cites W2962711930 @default.
- W2969812797 cites W2962803561 @default.
- W2969812797 cites W2962938888 @default.
- W2969812797 cites W2963097937 @default.
- W2969812797 cites W2963218601 @default.
- W2969812797 cites W2963246338 @default.
- W2969812797 cites W2964087927 @default.
- W2969812797 cites W2982220924 @default.
- W2969812797 cites W2994508843 @default.
- W2969812797 cites W3100437087 @default.
- W2969812797 cites W4211153864 @default.
- W2969812797 doi "https://doi.org/10.1016/j.cviu.2019.102799" @default.
- W2969812797 hasPublicationYear "2019" @default.
- W2969812797 type Work @default.
- W2969812797 sameAs 2969812797 @default.
- W2969812797 citedByCount "44" @default.
- W2969812797 countsByYear W29698127972019 @default.
- W2969812797 countsByYear W29698127972020 @default.
- W2969812797 countsByYear W29698127972021 @default.
- W2969812797 countsByYear W29698127972022 @default.
- W2969812797 countsByYear W29698127972023 @default.
- W2969812797 crossrefType "journal-article" @default.
- W2969812797 hasAuthorship W2969812797A5046369742 @default.
- W2969812797 hasAuthorship W2969812797A5087762753 @default.
- W2969812797 hasBestOaLocation W29698127972 @default.
- W2969812797 hasConcept C107457646 @default.
- W2969812797 hasConcept C108583219 @default.
- W2969812797 hasConcept C119857082 @default.
- W2969812797 hasConcept C120665830 @default.
- W2969812797 hasConcept C121332964 @default.
- W2969812797 hasConcept C121687571 @default.
- W2969812797 hasConcept C124101348 @default.
- W2969812797 hasConcept C154945302 @default.
- W2969812797 hasConcept C192209626 @default.
- W2969812797 hasConcept C2522767166 @default.
- W2969812797 hasConcept C25343380 @default.
- W2969812797 hasConcept C2777212361 @default.
- W2969812797 hasConcept C2780791683 @default.
- W2969812797 hasConcept C2987834672 @default.
- W2969812797 hasConcept C41008148 @default.
- W2969812797 hasConcept C62520636 @default.
- W2969812797 hasConcept C81363708 @default.
- W2969812797 hasConceptScore W2969812797C107457646 @default.
- W2969812797 hasConceptScore W2969812797C108583219 @default.
- W2969812797 hasConceptScore W2969812797C119857082 @default.
- W2969812797 hasConceptScore W2969812797C120665830 @default.
- W2969812797 hasConceptScore W2969812797C121332964 @default.
- W2969812797 hasConceptScore W2969812797C121687571 @default.
- W2969812797 hasConceptScore W2969812797C124101348 @default.
- W2969812797 hasConceptScore W2969812797C154945302 @default.
- W2969812797 hasConceptScore W2969812797C192209626 @default.
- W2969812797 hasConceptScore W2969812797C2522767166 @default.
- W2969812797 hasConceptScore W2969812797C25343380 @default.
- W2969812797 hasConceptScore W2969812797C2777212361 @default.
- W2969812797 hasConceptScore W2969812797C2780791683 @default.
- W2969812797 hasConceptScore W2969812797C2987834672 @default.
- W2969812797 hasConceptScore W2969812797C41008148 @default.
- W2969812797 hasConceptScore W2969812797C62520636 @default.
- W2969812797 hasConceptScore W2969812797C81363708 @default.