Matches in SemOpenAlex for { <https://semopenalex.org/work/W2969846780> ?p ?o ?g. }
- W2969846780 abstract "We propose to learn word embeddings from visual co-occurrences. Two words co-occur visually if both words apply to the same image or image region. Specifically, we extract four types of visual co-occurrences between object and attribute words from large-scale, textually-annotated visual databases like VisualGenome and ImageNet. We then train a multi-task log-bilinear model that compactly encodes word meanings represented by each co-occurrence type into a single visual word-vector. Through unsupervised clustering, supervised partitioning, and a zero-shot-like generalization analysis we show that our word embeddings complement text-only embeddings like GloVe by better representing similarities and differences between visual concepts that are difficult to obtain from text corpora alone. We further evaluate our embeddings on five downstream applications, four of which are vision-language tasks. Augmenting GloVe with our embeddings yields gains on all tasks. We also find that random embeddings perform comparably to learned embeddings on all supervised vision-language tasks, contrary to conventional wisdom." @default.
- W2969846780 created "2019-08-29" @default.
- W2969846780 creator A5009682734 @default.
- W2969846780 creator A5044439981 @default.
- W2969846780 creator A5049638480 @default.
- W2969846780 date "2019-08-22" @default.
- W2969846780 modified "2023-09-23" @default.
- W2969846780 title "ViCo: Word Embeddings from Visual Co-occurrences" @default.
- W2969846780 cites W1499253590 @default.
- W2969846780 cites W1614298861 @default.
- W2969846780 cites W1861492603 @default.
- W2969846780 cites W1889081078 @default.
- W2969846780 cites W1895577753 @default.
- W2969846780 cites W1905882502 @default.
- W2969846780 cites W1933349210 @default.
- W2969846780 cites W1956340063 @default.
- W2969846780 cites W1968153682 @default.
- W2969846780 cites W1978400666 @default.
- W2969846780 cites W1989415743 @default.
- W2969846780 cites W1996418862 @default.
- W2969846780 cites W2069736034 @default.
- W2969846780 cites W2081580037 @default.
- W2969846780 cites W2101105183 @default.
- W2969846780 cites W2108598243 @default.
- W2969846780 cites W2125031621 @default.
- W2969846780 cites W2141599568 @default.
- W2969846780 cites W2147152072 @default.
- W2969846780 cites W2152444902 @default.
- W2969846780 cites W2152825437 @default.
- W2969846780 cites W2153579005 @default.
- W2969846780 cites W2250539671 @default.
- W2969846780 cites W2413794162 @default.
- W2969846780 cites W2506483933 @default.
- W2969846780 cites W2551396370 @default.
- W2969846780 cites W2560730294 @default.
- W2969846780 cites W2604608429 @default.
- W2969846780 cites W2606473278 @default.
- W2969846780 cites W2610748790 @default.
- W2969846780 cites W2738152205 @default.
- W2969846780 cites W2739181657 @default.
- W2969846780 cites W2740765036 @default.
- W2969846780 cites W2786785665 @default.
- W2969846780 cites W2795117763 @default.
- W2969846780 cites W2804778516 @default.
- W2969846780 cites W2807304112 @default.
- W2969846780 cites W2884093133 @default.
- W2969846780 cites W2962739339 @default.
- W2969846780 cites W2962781380 @default.
- W2969846780 cites W2962811161 @default.
- W2969846780 cites W2963017553 @default.
- W2969846780 cites W2963191264 @default.
- W2969846780 cites W2963341956 @default.
- W2969846780 cites W2963486920 @default.
- W2969846780 cites W2963676207 @default.
- W2969846780 cites W2963783181 @default.
- W2969846780 cites W2963791035 @default.
- W2969846780 cites W2964121744 @default.
- W2969846780 cites W2964345792 @default.
- W2969846780 cites W3118608800 @default.
- W2969846780 hasPublicationYear "2019" @default.
- W2969846780 type Work @default.
- W2969846780 sameAs 2969846780 @default.
- W2969846780 citedByCount "1" @default.
- W2969846780 countsByYear W29698467802019 @default.
- W2969846780 crossrefType "posted-content" @default.
- W2969846780 hasAuthorship W2969846780A5009682734 @default.
- W2969846780 hasAuthorship W2969846780A5044439981 @default.
- W2969846780 hasAuthorship W2969846780A5049638480 @default.
- W2969846780 hasConcept C104317684 @default.
- W2969846780 hasConcept C112313634 @default.
- W2969846780 hasConcept C115961682 @default.
- W2969846780 hasConcept C127716648 @default.
- W2969846780 hasConcept C134306372 @default.
- W2969846780 hasConcept C153180895 @default.
- W2969846780 hasConcept C154945302 @default.
- W2969846780 hasConcept C162324750 @default.
- W2969846780 hasConcept C177148314 @default.
- W2969846780 hasConcept C185592680 @default.
- W2969846780 hasConcept C187736073 @default.
- W2969846780 hasConcept C188082640 @default.
- W2969846780 hasConcept C204321447 @default.
- W2969846780 hasConcept C2524010 @default.
- W2969846780 hasConcept C2780451532 @default.
- W2969846780 hasConcept C2781238097 @default.
- W2969846780 hasConcept C33923547 @default.
- W2969846780 hasConcept C41008148 @default.
- W2969846780 hasConcept C55493867 @default.
- W2969846780 hasConcept C73555534 @default.
- W2969846780 hasConcept C90805587 @default.
- W2969846780 hasConceptScore W2969846780C104317684 @default.
- W2969846780 hasConceptScore W2969846780C112313634 @default.
- W2969846780 hasConceptScore W2969846780C115961682 @default.
- W2969846780 hasConceptScore W2969846780C127716648 @default.
- W2969846780 hasConceptScore W2969846780C134306372 @default.
- W2969846780 hasConceptScore W2969846780C153180895 @default.
- W2969846780 hasConceptScore W2969846780C154945302 @default.
- W2969846780 hasConceptScore W2969846780C162324750 @default.
- W2969846780 hasConceptScore W2969846780C177148314 @default.
- W2969846780 hasConceptScore W2969846780C185592680 @default.
- W2969846780 hasConceptScore W2969846780C187736073 @default.