Matches in SemOpenAlex for { <https://semopenalex.org/work/W2969856472> ?p ?o ?g. }
- W2969856472 endingPage "1" @default.
- W2969856472 startingPage "1" @default.
- W2969856472 abstract "As an effective feature extraction method, locality sensitive discriminant analysis (LSDA) utilizes the neighbor relationship of data to characterize the manifold structure of data and uses label information of data to adapt to classification tasks. However, the performance of LSDA is affected by outliers and the destruction of local structure. Aiming at solving the limitations of LSDA, a locality sensitive discriminant projection (LSDP) algorithm is proposed. LSDP minimizes the distance of intraclass neighbor samples to maintain local structure and minimizes the intraclass non-neighbor samples to increase the compactness of intraclass samples after projection. The problem of outliers is alleviated by increasing the compactness of intraclass samples in subspace. At the same time, we redefine the weights of interclass neighbor samples to maintain the neighbor relationship of different labels samples. Holding the local structure of interclass samples maintains the manifold structure of data. Experiments on face datasets demonstrate the effectiveness of the LSDP algorithm." @default.
- W2969856472 created "2019-08-29" @default.
- W2969856472 creator A5056116699 @default.
- W2969856472 creator A5068772612 @default.
- W2969856472 date "2019-08-24" @default.
- W2969856472 modified "2023-09-27" @default.
- W2969856472 title "Locality sensitive discriminant projection for feature extraction and face recognition" @default.
- W2969856472 cites W1967932897 @default.
- W2969856472 cites W1968703694 @default.
- W2969856472 cites W1969966521 @default.
- W2969856472 cites W1970089434 @default.
- W2969856472 cites W2001141328 @default.
- W2969856472 cites W2003630018 @default.
- W2969856472 cites W2006652788 @default.
- W2969856472 cites W2016382116 @default.
- W2969856472 cites W2022463363 @default.
- W2969856472 cites W2024194293 @default.
- W2969856472 cites W2028614210 @default.
- W2969856472 cites W2038507433 @default.
- W2969856472 cites W2041750950 @default.
- W2969856472 cites W2053186076 @default.
- W2969856472 cites W2078138800 @default.
- W2969856472 cites W2079981574 @default.
- W2969856472 cites W2091472643 @default.
- W2969856472 cites W2097308346 @default.
- W2969856472 cites W2103250033 @default.
- W2969856472 cites W2104294146 @default.
- W2969856472 cites W2105055468 @default.
- W2969856472 cites W2106093934 @default.
- W2969856472 cites W2117553576 @default.
- W2969856472 cites W2121647436 @default.
- W2969856472 cites W2138451337 @default.
- W2969856472 cites W2229620910 @default.
- W2969856472 cites W2469084157 @default.
- W2969856472 cites W2587684481 @default.
- W2969856472 cites W2598351993 @default.
- W2969856472 cites W2763172947 @default.
- W2969856472 cites W2765840780 @default.
- W2969856472 cites W2791528017 @default.
- W2969856472 cites W2794135378 @default.
- W2969856472 cites W2809164105 @default.
- W2969856472 cites W2891820737 @default.
- W2969856472 cites W2905183051 @default.
- W2969856472 cites W2908030971 @default.
- W2969856472 cites W2909324822 @default.
- W2969856472 cites W2911214324 @default.
- W2969856472 cites W2933946304 @default.
- W2969856472 cites W2963743271 @default.
- W2969856472 cites W3148981562 @default.
- W2969856472 doi "https://doi.org/10.1117/1.jei.28.4.043028" @default.
- W2969856472 hasPublicationYear "2019" @default.
- W2969856472 type Work @default.
- W2969856472 sameAs 2969856472 @default.
- W2969856472 citedByCount "6" @default.
- W2969856472 countsByYear W29698564722020 @default.
- W2969856472 countsByYear W29698564722021 @default.
- W2969856472 countsByYear W29698564722022 @default.
- W2969856472 countsByYear W29698564722023 @default.
- W2969856472 crossrefType "journal-article" @default.
- W2969856472 hasAuthorship W2969856472A5056116699 @default.
- W2969856472 hasAuthorship W2969856472A5068772612 @default.
- W2969856472 hasConcept C11413529 @default.
- W2969856472 hasConcept C138885662 @default.
- W2969856472 hasConcept C144024400 @default.
- W2969856472 hasConcept C153180895 @default.
- W2969856472 hasConcept C154945302 @default.
- W2969856472 hasConcept C2776401178 @default.
- W2969856472 hasConcept C2779304628 @default.
- W2969856472 hasConcept C2779808786 @default.
- W2969856472 hasConcept C31510193 @default.
- W2969856472 hasConcept C31972630 @default.
- W2969856472 hasConcept C36289849 @default.
- W2969856472 hasConcept C41008148 @default.
- W2969856472 hasConcept C41895202 @default.
- W2969856472 hasConcept C52622490 @default.
- W2969856472 hasConcept C57493831 @default.
- W2969856472 hasConcept C69738355 @default.
- W2969856472 hasConcept C78397625 @default.
- W2969856472 hasConceptScore W2969856472C11413529 @default.
- W2969856472 hasConceptScore W2969856472C138885662 @default.
- W2969856472 hasConceptScore W2969856472C144024400 @default.
- W2969856472 hasConceptScore W2969856472C153180895 @default.
- W2969856472 hasConceptScore W2969856472C154945302 @default.
- W2969856472 hasConceptScore W2969856472C2776401178 @default.
- W2969856472 hasConceptScore W2969856472C2779304628 @default.
- W2969856472 hasConceptScore W2969856472C2779808786 @default.
- W2969856472 hasConceptScore W2969856472C31510193 @default.
- W2969856472 hasConceptScore W2969856472C31972630 @default.
- W2969856472 hasConceptScore W2969856472C36289849 @default.
- W2969856472 hasConceptScore W2969856472C41008148 @default.
- W2969856472 hasConceptScore W2969856472C41895202 @default.
- W2969856472 hasConceptScore W2969856472C52622490 @default.
- W2969856472 hasConceptScore W2969856472C57493831 @default.
- W2969856472 hasConceptScore W2969856472C69738355 @default.
- W2969856472 hasConceptScore W2969856472C78397625 @default.
- W2969856472 hasIssue "04" @default.
- W2969856472 hasLocation W29698564721 @default.
- W2969856472 hasOpenAccess W2969856472 @default.