Matches in SemOpenAlex for { <https://semopenalex.org/work/W2969872083> ?p ?o ?g. }
- W2969872083 abstract "The dynamics of microbial communities is driven by a range of interactions from symbiosis to predator-prey relationships, the majority of which are poorly understood. With the increasing availability of high-throughput microbiome taxonomic profiling data, it is now conceivable to directly learn the ecological models that explicitly define microbial interactions and explain community dynamics. The applicability of these approaches is severely limited by the lack of accurate absolute cell density measurements (biomass). We present a new computational approach that resolves this key limitation in the inference of generalized Lotka-Volterra models (gLVMs) by coupling biomass estimation and model inference with an expectation-maximization algorithm (BEEM). BEEM outperforms the state-of-the-art methods for inferring gLVMs, while simultaneously eliminating the need for additional experimental biomass data as input. BEEM’s application to previously inaccessible public datasets (due to the lack of biomass data) allowed us to construct ecological models of microbial communities in the human gut on a per-individual basis, revealing personalized dynamics and keystone species. BEEM addresses a key bottleneck in “systems analysis” of microbiomes by enabling accurate inference of ecological models from high throughput sequencing data without the need for experimental biomass measurements." @default.
- W2969872083 created "2019-08-29" @default.
- W2969872083 creator A5031384457 @default.
- W2969872083 creator A5043976833 @default.
- W2969872083 creator A5047040627 @default.
- W2969872083 creator A5062774997 @default.
- W2969872083 creator A5078101649 @default.
- W2969872083 creator A5087365202 @default.
- W2969872083 date "2019-08-22" @default.
- W2969872083 modified "2023-10-16" @default.
- W2969872083 title "An expectation-maximization algorithm enables accurate ecological modeling using longitudinal microbiome sequencing data" @default.
- W2969872083 cites W1864161604 @default.
- W2969872083 cites W1964027278 @default.
- W2969872083 cites W1966307338 @default.
- W2969872083 cites W1971061059 @default.
- W2969872083 cites W1973786003 @default.
- W2969872083 cites W1981761407 @default.
- W2969872083 cites W1982088266 @default.
- W2969872083 cites W1983314776 @default.
- W2969872083 cites W1993830991 @default.
- W2969872083 cites W2006404454 @default.
- W2969872083 cites W2012994611 @default.
- W2969872083 cites W2018639455 @default.
- W2969872083 cites W2026006003 @default.
- W2969872083 cites W2027763661 @default.
- W2969872083 cites W2033829415 @default.
- W2969872083 cites W2039813252 @default.
- W2969872083 cites W2044712133 @default.
- W2969872083 cites W2064383236 @default.
- W2969872083 cites W2068381362 @default.
- W2969872083 cites W2076393137 @default.
- W2969872083 cites W2087292184 @default.
- W2969872083 cites W2090692107 @default.
- W2969872083 cites W2095002551 @default.
- W2969872083 cites W2097389802 @default.
- W2969872083 cites W2101515427 @default.
- W2969872083 cites W2103088074 @default.
- W2969872083 cites W2106399600 @default.
- W2969872083 cites W2107018762 @default.
- W2969872083 cites W2108281900 @default.
- W2969872083 cites W2109700388 @default.
- W2969872083 cites W2113977541 @default.
- W2969872083 cites W2121211805 @default.
- W2969872083 cites W2126218947 @default.
- W2969872083 cites W2126452774 @default.
- W2969872083 cites W2126922170 @default.
- W2969872083 cites W2127175247 @default.
- W2969872083 cites W2131186249 @default.
- W2969872083 cites W2135293770 @default.
- W2969872083 cites W2154986869 @default.
- W2969872083 cites W2208966601 @default.
- W2969872083 cites W2281227836 @default.
- W2969872083 cites W2295912901 @default.
- W2969872083 cites W2296350961 @default.
- W2969872083 cites W2328023807 @default.
- W2969872083 cites W2334002433 @default.
- W2969872083 cites W2339370246 @default.
- W2969872083 cites W2396861954 @default.
- W2969872083 cites W2413154614 @default.
- W2969872083 cites W2431459199 @default.
- W2969872083 cites W2460413948 @default.
- W2969872083 cites W2467532039 @default.
- W2969872083 cites W2516350521 @default.
- W2969872083 cites W2559597060 @default.
- W2969872083 cites W2561761056 @default.
- W2969872083 cites W2563601998 @default.
- W2969872083 cites W2588997555 @default.
- W2969872083 cites W2589887861 @default.
- W2969872083 cites W2604874018 @default.
- W2969872083 cites W2609340709 @default.
- W2969872083 cites W2750417371 @default.
- W2969872083 cites W2754579667 @default.
- W2969872083 cites W2758860854 @default.
- W2969872083 cites W2770269406 @default.
- W2969872083 cites W2773368689 @default.
- W2969872083 cites W2777088958 @default.
- W2969872083 cites W2798633897 @default.
- W2969872083 cites W2810660502 @default.
- W2969872083 cites W2902868023 @default.
- W2969872083 cites W2951888555 @default.
- W2969872083 cites W2952200190 @default.
- W2969872083 cites W2952570005 @default.
- W2969872083 cites W4299542564 @default.
- W2969872083 doi "https://doi.org/10.1186/s40168-019-0729-z" @default.
- W2969872083 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6706891" @default.
- W2969872083 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31439018" @default.
- W2969872083 hasPublicationYear "2019" @default.
- W2969872083 type Work @default.
- W2969872083 sameAs 2969872083 @default.
- W2969872083 citedByCount "27" @default.
- W2969872083 countsByYear W29698720832019 @default.
- W2969872083 countsByYear W29698720832020 @default.
- W2969872083 countsByYear W29698720832021 @default.
- W2969872083 countsByYear W29698720832022 @default.
- W2969872083 countsByYear W29698720832023 @default.
- W2969872083 crossrefType "journal-article" @default.
- W2969872083 hasAuthorship W2969872083A5031384457 @default.
- W2969872083 hasAuthorship W2969872083A5043976833 @default.
- W2969872083 hasAuthorship W2969872083A5047040627 @default.
- W2969872083 hasAuthorship W2969872083A5062774997 @default.