Matches in SemOpenAlex for { <https://semopenalex.org/work/W2969885416> ?p ?o ?g. }
- W2969885416 endingPage "1" @default.
- W2969885416 startingPage "1" @default.
- W2969885416 abstract "This paper introduces a deep neural network based method, i.e., DeepOrganNet, to generate and visualize fully high-fidelity 3D / 4D organ geometric models from single-view medical images with complicated background in real time. Traditional 3D / 4D medical image reconstruction requires near hundreds of projections, which cost insufferable computational time and deliver undesirable high imaging / radiation dose to human subjects. Moreover, it always needs further notorious processes to segment or extract the accurate 3D organ models subsequently. The computational time and imaging dose can be reduced by decreasing the number of projections, but the reconstructed image quality is degraded accordingly. To our knowledge, there is no method directly and explicitly reconstructing multiple 3D organ meshes from a single 2D medical grayscale image on the fly. Given single-view 2D medical images, e.g., 3D / 4D-CT projections or X-ray images, our end-to-end DeepOrganNet framework can efficiently and effectively reconstruct 3D / 4D lung models with a variety of geometric shapes by learning the smooth deformation fields from multiple templates based on a trivariate tensor-product deformation technique, leveraging an informative latent descriptor extracted from input 2D images. The proposed method can guarantee to generate high-quality and high-fidelity manifold meshes for 3D / 4D lung models; while, all current deep learning based approaches on the shape reconstruction from a single image cannot. The major contributions of this work are to accurately reconstruct the 3D organ shapes from 2D single-view projection, significantly improve the procedure time to allow on-the-fly visualization, and dramatically reduce the imaging dose for human subjects. Experimental results are evaluated and compared with the traditional reconstruction method and the state-of-the-art in deep learning, by using extensive 3D and 4D examples, including both synthetic phantom and real patient datasets. The efficiency of the proposed method shows that it only needs several milliseconds to generate organ meshes with 10K vertices, which has great potential to be used in real-time image guided radiation therapy (IGRT)." @default.
- W2969885416 created "2019-08-29" @default.
- W2969885416 creator A5050419964 @default.
- W2969885416 creator A5082598478 @default.
- W2969885416 creator A5091044747 @default.
- W2969885416 date "2019-01-01" @default.
- W2969885416 modified "2023-10-16" @default.
- W2969885416 title "DeepOrganNet: On-the-Fly Reconstruction and Visualization of 3D / 4D Lung Models from Single-View Projections by Deep Deformation Network" @default.
- W2969885416 cites W1532217093 @default.
- W2969885416 cites W1533769128 @default.
- W2969885416 cites W1546217776 @default.
- W2969885416 cites W1601600012 @default.
- W2969885416 cites W1798731418 @default.
- W2969885416 cites W1893912098 @default.
- W2969885416 cites W1986612530 @default.
- W2969885416 cites W2006502673 @default.
- W2969885416 cites W2017797123 @default.
- W2969885416 cites W2021261909 @default.
- W2969885416 cites W2029266086 @default.
- W2969885416 cites W2041802765 @default.
- W2969885416 cites W2042036475 @default.
- W2969885416 cites W2045059592 @default.
- W2969885416 cites W2053790843 @default.
- W2969885416 cites W2055483062 @default.
- W2969885416 cites W2065319605 @default.
- W2969885416 cites W2096619076 @default.
- W2969885416 cites W2104095591 @default.
- W2969885416 cites W2108598243 @default.
- W2969885416 cites W2118411250 @default.
- W2969885416 cites W2119872339 @default.
- W2969885416 cites W2121511538 @default.
- W2969885416 cites W2121535648 @default.
- W2969885416 cites W2129308920 @default.
- W2969885416 cites W2132947399 @default.
- W2969885416 cites W2142514727 @default.
- W2969885416 cites W2143668817 @default.
- W2969885416 cites W2146814781 @default.
- W2969885416 cites W2149400409 @default.
- W2969885416 cites W2151996626 @default.
- W2969885416 cites W2157812230 @default.
- W2969885416 cites W2183341477 @default.
- W2969885416 cites W2229412420 @default.
- W2969885416 cites W2274410306 @default.
- W2969885416 cites W2342277278 @default.
- W2969885416 cites W2552392628 @default.
- W2969885416 cites W2560722161 @default.
- W2969885416 cites W2792684994 @default.
- W2969885416 cites W2805658037 @default.
- W2969885416 cites W2962778872 @default.
- W2969885416 cites W2963563548 @default.
- W2969885416 cites W3122435768 @default.
- W2969885416 cites W4240518936 @default.
- W2969885416 cites W4296142362 @default.
- W2969885416 doi "https://doi.org/10.1109/tvcg.2019.2934369" @default.
- W2969885416 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31442979" @default.
- W2969885416 hasPublicationYear "2019" @default.
- W2969885416 type Work @default.
- W2969885416 sameAs 2969885416 @default.
- W2969885416 citedByCount "27" @default.
- W2969885416 countsByYear W29698854162020 @default.
- W2969885416 countsByYear W29698854162021 @default.
- W2969885416 countsByYear W29698854162022 @default.
- W2969885416 countsByYear W29698854162023 @default.
- W2969885416 crossrefType "journal-article" @default.
- W2969885416 hasAuthorship W2969885416A5050419964 @default.
- W2969885416 hasAuthorship W2969885416A5082598478 @default.
- W2969885416 hasAuthorship W2969885416A5091044747 @default.
- W2969885416 hasBestOaLocation W29698854162 @default.
- W2969885416 hasConcept C108583219 @default.
- W2969885416 hasConcept C109950114 @default.
- W2969885416 hasConcept C11413529 @default.
- W2969885416 hasConcept C121684516 @default.
- W2969885416 hasConcept C141379421 @default.
- W2969885416 hasConcept C153180895 @default.
- W2969885416 hasConcept C154945302 @default.
- W2969885416 hasConcept C31487907 @default.
- W2969885416 hasConcept C31601959 @default.
- W2969885416 hasConcept C31972630 @default.
- W2969885416 hasConcept C36464697 @default.
- W2969885416 hasConcept C41008148 @default.
- W2969885416 hasConcept C57493831 @default.
- W2969885416 hasConceptScore W2969885416C108583219 @default.
- W2969885416 hasConceptScore W2969885416C109950114 @default.
- W2969885416 hasConceptScore W2969885416C11413529 @default.
- W2969885416 hasConceptScore W2969885416C121684516 @default.
- W2969885416 hasConceptScore W2969885416C141379421 @default.
- W2969885416 hasConceptScore W2969885416C153180895 @default.
- W2969885416 hasConceptScore W2969885416C154945302 @default.
- W2969885416 hasConceptScore W2969885416C31487907 @default.
- W2969885416 hasConceptScore W2969885416C31601959 @default.
- W2969885416 hasConceptScore W2969885416C31972630 @default.
- W2969885416 hasConceptScore W2969885416C36464697 @default.
- W2969885416 hasConceptScore W2969885416C41008148 @default.
- W2969885416 hasConceptScore W2969885416C57493831 @default.
- W2969885416 hasLocation W29698854161 @default.
- W2969885416 hasLocation W29698854162 @default.
- W2969885416 hasOpenAccess W2969885416 @default.
- W2969885416 hasPrimaryLocation W29698854161 @default.