Matches in SemOpenAlex for { <https://semopenalex.org/work/W2969890640> ?p ?o ?g. }
- W2969890640 endingPage "1936" @default.
- W2969890640 startingPage "1936" @default.
- W2969890640 abstract "Leaf dry matter content (LDMC), the ratio of leaf dry mass to its fresh mass, is a key plant trait, which is an indicator for many critical aspects of plant growth and survival. Accurate and fast detection of the spatiotemporal dynamics of LDMC would help understanding plants’ carbon assimilation and relative growth rate, and may then be used as an input for vegetation process models to monitor ecosystems. Satellite remote sensing is an effective tool for predicting such plant traits non-destructively. However, studies on the applicability of remote sensing for LDMC retrieval are scarce. Only a few studies have looked into the practicality of using remotely sensed data for the prediction of LDMC in a forest ecosystem. In this study, we assessed the performance of partial least squares regression (PLSR) plus 11 widely used vegetation indices (VIs), calculated based on different combinations of Sentinel-2 bands, in predicting LDMC in a coastal wetland. The accuracy of the selected methods was validated using LDMC, destructively measured in 50 randomly distributed sample plots at the study site in Schiermonnikoog, the Netherlands. The PLSR applied to canopy reflectance of Sentinel-2 bands resulted in accurate prediction of LDMC (coefficient of determination (R2) = 0.71, RMSE = 0.033). PLSR applied to the studied VIs provided an R2 of 0.70 and RMSE of 0.033. Four vegetation indices (enhanced vegetation index(EVI), specific leaf area vegetation index (SLAVI), simple ratio vegetation index (SRVI), and visible atmospherically resistant index (VARI)) computed using band 3 (green) and band 11 of the Sentinel-2 performed equally well and achieved a good measure of accuracy (R2 = 0.67, RMSE = 0.034). Our findings demonstrate the feasibility of using Sentinel-2 surface reflectance data to map LDMC in a coastal wetland." @default.
- W2969890640 created "2019-08-29" @default.
- W2969890640 creator A5019628934 @default.
- W2969890640 creator A5047127960 @default.
- W2969890640 creator A5056165202 @default.
- W2969890640 creator A5086519517 @default.
- W2969890640 date "2019-08-19" @default.
- W2969890640 modified "2023-09-27" @default.
- W2969890640 title "Validating the Predictive Power of Statistical Models in Retrieving Leaf Dry Matter Content of a Coastal Wetland from a Sentinel-2 Image" @default.
- W2969890640 cites W1967592351 @default.
- W2969890640 cites W1971495154 @default.
- W2969890640 cites W1995725937 @default.
- W2969890640 cites W1998511120 @default.
- W2969890640 cites W2000485836 @default.
- W2969890640 cites W2001312134 @default.
- W2969890640 cites W2008426212 @default.
- W2969890640 cites W2012686349 @default.
- W2969890640 cites W2024039740 @default.
- W2969890640 cites W2034591642 @default.
- W2969890640 cites W2041970143 @default.
- W2969890640 cites W2059446377 @default.
- W2969890640 cites W2059697555 @default.
- W2969890640 cites W2060631741 @default.
- W2969890640 cites W2083572533 @default.
- W2969890640 cites W2084956990 @default.
- W2969890640 cites W2095055020 @default.
- W2969890640 cites W2096599785 @default.
- W2969890640 cites W2097970470 @default.
- W2969890640 cites W2102633940 @default.
- W2969890640 cites W2109895772 @default.
- W2969890640 cites W2111947859 @default.
- W2969890640 cites W2114535331 @default.
- W2969890640 cites W2115615525 @default.
- W2969890640 cites W2117884339 @default.
- W2969890640 cites W2118791227 @default.
- W2969890640 cites W2119868411 @default.
- W2969890640 cites W2121119057 @default.
- W2969890640 cites W2124726266 @default.
- W2969890640 cites W2124937378 @default.
- W2969890640 cites W2125786618 @default.
- W2969890640 cites W2150452912 @default.
- W2969890640 cites W2153522066 @default.
- W2969890640 cites W2163410149 @default.
- W2969890640 cites W2166312616 @default.
- W2969890640 cites W2166516660 @default.
- W2969890640 cites W2166660987 @default.
- W2969890640 cites W2167787089 @default.
- W2969890640 cites W2177941171 @default.
- W2969890640 cites W2212839633 @default.
- W2969890640 cites W2235689173 @default.
- W2969890640 cites W2275931631 @default.
- W2969890640 cites W2283847619 @default.
- W2969890640 cites W2322942130 @default.
- W2969890640 cites W2498515979 @default.
- W2969890640 cites W2513421838 @default.
- W2969890640 cites W2529670104 @default.
- W2969890640 cites W2543433405 @default.
- W2969890640 cites W2553405363 @default.
- W2969890640 cites W2561479186 @default.
- W2969890640 cites W2576918506 @default.
- W2969890640 cites W2585058749 @default.
- W2969890640 cites W2592760899 @default.
- W2969890640 cites W2605645516 @default.
- W2969890640 cites W2617056706 @default.
- W2969890640 cites W2782220608 @default.
- W2969890640 cites W2795553744 @default.
- W2969890640 cites W2803409282 @default.
- W2969890640 cites W2901420733 @default.
- W2969890640 cites W2924772986 @default.
- W2969890640 cites W4251205811 @default.
- W2969890640 cites W633320881 @default.
- W2969890640 doi "https://doi.org/10.3390/rs11161936" @default.
- W2969890640 hasPublicationYear "2019" @default.
- W2969890640 type Work @default.
- W2969890640 sameAs 2969890640 @default.
- W2969890640 citedByCount "6" @default.
- W2969890640 countsByYear W29698906402020 @default.
- W2969890640 countsByYear W29698906402021 @default.
- W2969890640 countsByYear W29698906402022 @default.
- W2969890640 crossrefType "journal-article" @default.
- W2969890640 hasAuthorship W2969890640A5019628934 @default.
- W2969890640 hasAuthorship W2969890640A5047127960 @default.
- W2969890640 hasAuthorship W2969890640A5056165202 @default.
- W2969890640 hasAuthorship W2969890640A5086519517 @default.
- W2969890640 hasBestOaLocation W29698906401 @default.
- W2969890640 hasConcept C101000010 @default.
- W2969890640 hasConcept C105795698 @default.
- W2969890640 hasConcept C128990827 @default.
- W2969890640 hasConcept C139945424 @default.
- W2969890640 hasConcept C142724271 @default.
- W2969890640 hasConcept C1549246 @default.
- W2969890640 hasConcept C18903297 @default.
- W2969890640 hasConcept C205649164 @default.
- W2969890640 hasConcept C22354355 @default.
- W2969890640 hasConcept C25989453 @default.
- W2969890640 hasConcept C2776133958 @default.
- W2969890640 hasConcept C2780376076 @default.
- W2969890640 hasConcept C33923547 @default.