Matches in SemOpenAlex for { <https://semopenalex.org/work/W2969891217> ?p ?o ?g. }
- W2969891217 endingPage "73" @default.
- W2969891217 startingPage "73" @default.
- W2969891217 abstract "Approaches are sought after to regulate ionotropic and chronotropic properties of the mammalian heart. Electrodes are commonly used for rapidly exciting cardiac tissue and resetting abnormal pacing. With the advent of optogenetics and the use of tissue-specific expression of light-activated channels, cardiac cells cannot only be excited but also inhibited with ion-selective conductance. As a proof of concept for the ability to slow down cardiac pacing, anion-conducting channelrhodopsins (GtACR1/2) and the anion pump halorhodopsin (eNpHR) were expressed in hearts of larval Drosophila and activated by light. Unlike body wall muscles in most animals, the equilibrium potential for Cl− is more positive as compared to the resting membrane potential in larval Drosophila. As a consequence, upon activating the two forms of GtACR1 and 2 with low light intensity the heart rate increased, likely due to depolarization and opening of voltage-gated Ca2+ channels. However, with very intense light activation the heart rate ceases, which may be due to Cl– shunting to the reversal potential for chloride. Activating eNpHR hyperpolarizes body wall and cardiac muscle in larval Drosophila and rapidly decreases heart rate. The decrease in heart rate is related to light intensity. Intense light activation of eNpHR stops the heart from beating, whereas lower intensities slowed the rate. Even with upregulation of the heart rate with serotonin, the pacing of the heart was slowed with light. Thus, regulation of the heart rate in Drosophila can be accomplished by activating anion-conducting channelrhodopsins using light. These approaches are demonstrated in a genetically amenable insect model." @default.
- W2969891217 created "2019-08-29" @default.
- W2969891217 creator A5004599889 @default.
- W2969891217 creator A5049463562 @default.
- W2969891217 creator A5064828114 @default.
- W2969891217 creator A5079358210 @default.
- W2969891217 date "2019-08-22" @default.
- W2969891217 modified "2023-09-23" @default.
- W2969891217 title "The Effects of Chloride Flux on Drosophila Heart Rate" @default.
- W2969891217 cites W1139015881 @default.
- W2969891217 cites W1508315241 @default.
- W2969891217 cites W1594872575 @default.
- W2969891217 cites W1788106766 @default.
- W2969891217 cites W1872697413 @default.
- W2969891217 cites W1873809021 @default.
- W2969891217 cites W1913037329 @default.
- W2969891217 cites W1917872676 @default.
- W2969891217 cites W1963950145 @default.
- W2969891217 cites W1977421618 @default.
- W2969891217 cites W1978157456 @default.
- W2969891217 cites W1978253480 @default.
- W2969891217 cites W1981252811 @default.
- W2969891217 cites W1983123512 @default.
- W2969891217 cites W1983524403 @default.
- W2969891217 cites W1991472912 @default.
- W2969891217 cites W1993160376 @default.
- W2969891217 cites W1993257206 @default.
- W2969891217 cites W2002819801 @default.
- W2969891217 cites W2004666307 @default.
- W2969891217 cites W2015082418 @default.
- W2969891217 cites W2020386407 @default.
- W2969891217 cites W2023438235 @default.
- W2969891217 cites W2024863526 @default.
- W2969891217 cites W2027038375 @default.
- W2969891217 cites W2038294038 @default.
- W2969891217 cites W2040631236 @default.
- W2969891217 cites W2055518516 @default.
- W2969891217 cites W2058488568 @default.
- W2969891217 cites W2062595406 @default.
- W2969891217 cites W2068466141 @default.
- W2969891217 cites W2073348909 @default.
- W2969891217 cites W2074089338 @default.
- W2969891217 cites W2088186055 @default.
- W2969891217 cites W2099802890 @default.
- W2969891217 cites W2104755463 @default.
- W2969891217 cites W2114218568 @default.
- W2969891217 cites W2115195542 @default.
- W2969891217 cites W2117672081 @default.
- W2969891217 cites W2120329309 @default.
- W2969891217 cites W2131802378 @default.
- W2969891217 cites W2137926032 @default.
- W2969891217 cites W2148635980 @default.
- W2969891217 cites W2149984901 @default.
- W2969891217 cites W2150753634 @default.
- W2969891217 cites W2158256695 @default.
- W2969891217 cites W2159278981 @default.
- W2969891217 cites W2159423248 @default.
- W2969891217 cites W2167095271 @default.
- W2969891217 cites W2169071574 @default.
- W2969891217 cites W2189039804 @default.
- W2969891217 cites W2242082693 @default.
- W2969891217 cites W2254922371 @default.
- W2969891217 cites W2264274701 @default.
- W2969891217 cites W2287030368 @default.
- W2969891217 cites W2293619782 @default.
- W2969891217 cites W2312645904 @default.
- W2969891217 cites W2395335003 @default.
- W2969891217 cites W2520692015 @default.
- W2969891217 cites W2529060413 @default.
- W2969891217 cites W2574119922 @default.
- W2969891217 cites W2580319655 @default.
- W2969891217 cites W2586116303 @default.
- W2969891217 cites W2626767174 @default.
- W2969891217 cites W2735958801 @default.
- W2969891217 cites W2744000261 @default.
- W2969891217 cites W2765577635 @default.
- W2969891217 cites W2765931689 @default.
- W2969891217 cites W2768950572 @default.
- W2969891217 cites W2793175172 @default.
- W2969891217 cites W2810339084 @default.
- W2969891217 cites W2883919904 @default.
- W2969891217 cites W2901817262 @default.
- W2969891217 cites W2905446977 @default.
- W2969891217 cites W2920086836 @default.
- W2969891217 cites W2922414224 @default.
- W2969891217 cites W2943629577 @default.
- W2969891217 cites W2944906495 @default.
- W2969891217 cites W2950734228 @default.
- W2969891217 cites W2951486785 @default.
- W2969891217 cites W2981338644 @default.
- W2969891217 cites W328194283 @default.
- W2969891217 cites W4239458283 @default.
- W2969891217 cites W949986555 @default.
- W2969891217 doi "https://doi.org/10.3390/mps2030073" @default.
- W2969891217 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6789470" @default.
- W2969891217 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31443492" @default.
- W2969891217 hasPublicationYear "2019" @default.
- W2969891217 type Work @default.