Matches in SemOpenAlex for { <https://semopenalex.org/work/W2969911727> ?p ?o ?g. }
- W2969911727 abstract "Abstract Histopathological image analysis performed by a trained expert is currently regarded as the gold-standard in the case of many pathologies, including cancers. However, such approaches are laborious, time consuming and contain a risk for bias or human error. There is thus a clear need for faster, less intrusive and more accurate diagnostic solutions, requiring also minimal human intervention. Multiphoton Microscopy (MPM) can alleviate some of the drawbacks specific to traditional histopathology by exploiting various endogenous optical signals to provide virtual biopsies that reflect the architecture and composition of tissues, both in-vivo or ex-vivo. Here we show that MPM imaging of the dermoepidermal junction (DEJ) in unstained tissues provides useful cues for a histopathologist to identify the onset of non-melanoma skin cancers. Furthermore, we show that MPM images collected on the DEJ, besides being easy to interpret by a trained specialist, can be automatically classified into healthy and dysplastic classes with high precision using a Deep Learning method and existing pre-trained Convolutional Neural Networks. Our results suggest that Deep Learning enhanced MPM for in-vivo skin cancer screening could facilitate timely diagnosis and intervention, enabling thus more optimal therapeutic approaches." @default.
- W2969911727 created "2019-08-29" @default.
- W2969911727 creator A5008094466 @default.
- W2969911727 creator A5016206284 @default.
- W2969911727 creator A5052926136 @default.
- W2969911727 creator A5058931656 @default.
- W2969911727 creator A5077669891 @default.
- W2969911727 date "2019-08-22" @default.
- W2969911727 modified "2023-09-23" @default.
- W2969911727 title "Investigating and Assessing the Dermoepidermal Junction with Multiphoton Microscopy and Deep Learning" @default.
- W2969911727 cites W1748311474 @default.
- W2969911727 cites W1828367075 @default.
- W2969911727 cites W1865335887 @default.
- W2969911727 cites W1943394565 @default.
- W2969911727 cites W1960459100 @default.
- W2969911727 cites W1965498876 @default.
- W2969911727 cites W1972955523 @default.
- W2969911727 cites W1979968811 @default.
- W2969911727 cites W1996841581 @default.
- W2969911727 cites W1997814978 @default.
- W2969911727 cites W2002971675 @default.
- W2969911727 cites W2005017605 @default.
- W2969911727 cites W2007941569 @default.
- W2969911727 cites W2015476355 @default.
- W2969911727 cites W2027425247 @default.
- W2969911727 cites W2037340759 @default.
- W2969911727 cites W2038166075 @default.
- W2969911727 cites W2039739172 @default.
- W2969911727 cites W2047852588 @default.
- W2969911727 cites W2070832439 @default.
- W2969911727 cites W2073888670 @default.
- W2969911727 cites W2074457543 @default.
- W2969911727 cites W2077572701 @default.
- W2969911727 cites W2097117768 @default.
- W2969911727 cites W2099632690 @default.
- W2969911727 cites W2100392590 @default.
- W2969911727 cites W2106212985 @default.
- W2969911727 cites W2108598243 @default.
- W2969911727 cites W2123340620 @default.
- W2969911727 cites W2127261116 @default.
- W2969911727 cites W2129827453 @default.
- W2969911727 cites W2130284011 @default.
- W2969911727 cites W2132566055 @default.
- W2969911727 cites W2134479430 @default.
- W2969911727 cites W2150377199 @default.
- W2969911727 cites W2154882673 @default.
- W2969911727 cites W2167279371 @default.
- W2969911727 cites W2167460696 @default.
- W2969911727 cites W2213859825 @default.
- W2969911727 cites W2463986658 @default.
- W2969911727 cites W2493563732 @default.
- W2969911727 cites W2550441537 @default.
- W2969911727 cites W2767008299 @default.
- W2969911727 cites W2767630663 @default.
- W2969911727 cites W2917684769 @default.
- W2969911727 cites W2919115771 @default.
- W2969911727 cites W3098491829 @default.
- W2969911727 cites W4233764926 @default.
- W2969911727 cites W4237769345 @default.
- W2969911727 doi "https://doi.org/10.1101/743054" @default.
- W2969911727 hasPublicationYear "2019" @default.
- W2969911727 type Work @default.
- W2969911727 sameAs 2969911727 @default.
- W2969911727 citedByCount "0" @default.
- W2969911727 crossrefType "posted-content" @default.
- W2969911727 hasAuthorship W2969911727A5008094466 @default.
- W2969911727 hasAuthorship W2969911727A5016206284 @default.
- W2969911727 hasAuthorship W2969911727A5052926136 @default.
- W2969911727 hasAuthorship W2969911727A5058931656 @default.
- W2969911727 hasAuthorship W2969911727A5077669891 @default.
- W2969911727 hasBestOaLocation W29699117271 @default.
- W2969911727 hasConcept C108583219 @default.
- W2969911727 hasConcept C120665830 @default.
- W2969911727 hasConcept C121332964 @default.
- W2969911727 hasConcept C126838900 @default.
- W2969911727 hasConcept C142724271 @default.
- W2969911727 hasConcept C147080431 @default.
- W2969911727 hasConcept C150903083 @default.
- W2969911727 hasConcept C153180895 @default.
- W2969911727 hasConcept C154945302 @default.
- W2969911727 hasConcept C169274487 @default.
- W2969911727 hasConcept C207001950 @default.
- W2969911727 hasConcept C25834368 @default.
- W2969911727 hasConcept C26291073 @default.
- W2969911727 hasConcept C2777624698 @default.
- W2969911727 hasConcept C40993552 @default.
- W2969911727 hasConcept C41008148 @default.
- W2969911727 hasConcept C544855455 @default.
- W2969911727 hasConcept C71924100 @default.
- W2969911727 hasConcept C81363708 @default.
- W2969911727 hasConcept C86803240 @default.
- W2969911727 hasConcept C91881484 @default.
- W2969911727 hasConcept C99288877 @default.
- W2969911727 hasConceptScore W2969911727C108583219 @default.
- W2969911727 hasConceptScore W2969911727C120665830 @default.
- W2969911727 hasConceptScore W2969911727C121332964 @default.
- W2969911727 hasConceptScore W2969911727C126838900 @default.
- W2969911727 hasConceptScore W2969911727C142724271 @default.
- W2969911727 hasConceptScore W2969911727C147080431 @default.
- W2969911727 hasConceptScore W2969911727C150903083 @default.