Matches in SemOpenAlex for { <https://semopenalex.org/work/W2969912043> ?p ?o ?g. }
- W2969912043 endingPage "298" @default.
- W2969912043 startingPage "273" @default.
- W2969912043 abstract "Summary Accelerometry is a low‐cost and noninvasive method that has been used to discriminate sleep from wake, however, its utility to detect sleep stages is unclear. We detail the development and comparison of methods which utilise raw, triaxial accelerometry data to classify varying stages of sleep, ranging from sleep/wake detection to discriminating rapid eye movement sleep, stage one sleep, stage two sleep, deep sleep and wake. First‐ and second‐order hidden Markov models (HMMs) with time‐homogeneous and time‐varying transition probability matrices, along with continuous acceleration observations in the form of a Gaussian‐observation HMM and K ‐means classified acceleration in a discrete‐observation HMM were explored. In addition, generalised linear mixed models (GLMMs) with binary and multinomial responses and logit link functions were considered as was whether incorporating adjoining acceleration information into the models improved prediction. Model predictions were compared to the reference‐standard in sleep detection (polysomnography) and outcome accuracies were calculated. Consistently, HMMs yielded greater sleep stage detection than GLMMs but there was little difference between first‐ and second‐order HMMs. Varying degrees of difference were observed when comparing Gaussian‐observation HMMs to discrete‐observation HMMs, and time‐varying HMMs yielded greater discrimination than time‐homogeneous HMMs, as did models which considered adjoining acceleration information. These results suggest that wrist‐worn accelerometry data may be able to detect sleep stages but that further investigation is required to optimise classification accuracy." @default.
- W2969912043 created "2019-08-29" @default.
- W2969912043 creator A5060857674 @default.
- W2969912043 creator A5064816596 @default.
- W2969912043 creator A5068474623 @default.
- W2969912043 creator A5069604173 @default.
- W2969912043 creator A5081147777 @default.
- W2969912043 date "2019-08-24" @default.
- W2969912043 modified "2023-10-02" @default.
- W2969912043 title "Using hidden Markov models with raw, triaxial wrist accelerometry data to determine sleep stages" @default.
- W2969912043 cites W117545607 @default.
- W2969912043 cites W1507001215 @default.
- W2969912043 cites W1666151891 @default.
- W2969912043 cites W1765940783 @default.
- W2969912043 cites W1963938004 @default.
- W2969912043 cites W1968114652 @default.
- W2969912043 cites W1982754133 @default.
- W2969912043 cites W2012906582 @default.
- W2969912043 cites W2019087047 @default.
- W2969912043 cites W2101194023 @default.
- W2969912043 cites W2109301401 @default.
- W2969912043 cites W2117478831 @default.
- W2969912043 cites W2295989425 @default.
- W2969912043 cites W2327453846 @default.
- W2969912043 cites W2330219538 @default.
- W2969912043 cites W2765638029 @default.
- W2969912043 cites W2767621055 @default.
- W2969912043 cites W2796120867 @default.
- W2969912043 cites W2809778288 @default.
- W2969912043 cites W2911964244 @default.
- W2969912043 doi "https://doi.org/10.1111/anzs.12270" @default.
- W2969912043 hasPublicationYear "2019" @default.
- W2969912043 type Work @default.
- W2969912043 sameAs 2969912043 @default.
- W2969912043 citedByCount "3" @default.
- W2969912043 countsByYear W29699120432021 @default.
- W2969912043 countsByYear W29699120432022 @default.
- W2969912043 countsByYear W29699120432023 @default.
- W2969912043 crossrefType "journal-article" @default.
- W2969912043 hasAuthorship W2969912043A5060857674 @default.
- W2969912043 hasAuthorship W2969912043A5064816596 @default.
- W2969912043 hasAuthorship W2969912043A5068474623 @default.
- W2969912043 hasAuthorship W2969912043A5069604173 @default.
- W2969912043 hasAuthorship W2969912043A5081147777 @default.
- W2969912043 hasConcept C105795698 @default.
- W2969912043 hasConcept C111919701 @default.
- W2969912043 hasConcept C117896860 @default.
- W2969912043 hasConcept C118552586 @default.
- W2969912043 hasConcept C121332964 @default.
- W2969912043 hasConcept C153180895 @default.
- W2969912043 hasConcept C154945302 @default.
- W2969912043 hasConcept C15744967 @default.
- W2969912043 hasConcept C23224414 @default.
- W2969912043 hasConcept C2775841894 @default.
- W2969912043 hasConcept C2778205975 @default.
- W2969912043 hasConcept C28490314 @default.
- W2969912043 hasConcept C33923547 @default.
- W2969912043 hasConcept C41008148 @default.
- W2969912043 hasConcept C522805319 @default.
- W2969912043 hasConcept C74650414 @default.
- W2969912043 hasConcept C89805583 @default.
- W2969912043 hasConceptScore W2969912043C105795698 @default.
- W2969912043 hasConceptScore W2969912043C111919701 @default.
- W2969912043 hasConceptScore W2969912043C117896860 @default.
- W2969912043 hasConceptScore W2969912043C118552586 @default.
- W2969912043 hasConceptScore W2969912043C121332964 @default.
- W2969912043 hasConceptScore W2969912043C153180895 @default.
- W2969912043 hasConceptScore W2969912043C154945302 @default.
- W2969912043 hasConceptScore W2969912043C15744967 @default.
- W2969912043 hasConceptScore W2969912043C23224414 @default.
- W2969912043 hasConceptScore W2969912043C2775841894 @default.
- W2969912043 hasConceptScore W2969912043C2778205975 @default.
- W2969912043 hasConceptScore W2969912043C28490314 @default.
- W2969912043 hasConceptScore W2969912043C33923547 @default.
- W2969912043 hasConceptScore W2969912043C41008148 @default.
- W2969912043 hasConceptScore W2969912043C522805319 @default.
- W2969912043 hasConceptScore W2969912043C74650414 @default.
- W2969912043 hasConceptScore W2969912043C89805583 @default.
- W2969912043 hasFunder F4320320473 @default.
- W2969912043 hasFunder F4320320479 @default.
- W2969912043 hasFunder F4320320987 @default.
- W2969912043 hasFunder F4320320988 @default.
- W2969912043 hasFunder F4320320989 @default.
- W2969912043 hasFunder F4320320990 @default.
- W2969912043 hasFunder F4320320991 @default.
- W2969912043 hasFunder F4320334705 @default.
- W2969912043 hasIssue "3" @default.
- W2969912043 hasLocation W29699120431 @default.
- W2969912043 hasOpenAccess W2969912043 @default.
- W2969912043 hasPrimaryLocation W29699120431 @default.
- W2969912043 hasRelatedWork W1902800522 @default.
- W2969912043 hasRelatedWork W1906940141 @default.
- W2969912043 hasRelatedWork W2339469482 @default.
- W2969912043 hasRelatedWork W2396951905 @default.
- W2969912043 hasRelatedWork W2408073983 @default.
- W2969912043 hasRelatedWork W2539985974 @default.
- W2969912043 hasRelatedWork W3005825531 @default.
- W2969912043 hasRelatedWork W3137350919 @default.