Matches in SemOpenAlex for { <https://semopenalex.org/work/W2969929892> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2969929892 endingPage "118748" @default.
- W2969929892 startingPage "118739" @default.
- W2969929892 abstract "This study presents a modified recurrent neural network (RNN) model designed as a parallel computing structure for serial information processing. The result is a novel parallel recurrent neural network (P-RNN), proposed for application to time-varying signal classification. The network uses gated recurrent units (GRUs) for basic information processing and consists of a multi-channel time series signal input layer, parallel processing structure units, a signal feature fusion layer, and a softmax classifier. The P-RNN expands the existing RNN serial processing mode for multi-channel time-varying signals into parallel mode and realizes the embedding of multi-channel signal structure features. In these parallel processing units, the input signal for each channel corresponds to a GRU recurrent network. Feature extraction and attribute association of single-channel signals were performed to achieve parallel processing of all-channel signals. In the feature fusion layer, feature vectors from each channel signal were integrated to generate a comprehensive feature matrix. On this basis, the softmax function was used as a classifier for multi-channel signals. With this mechanism, the P-RNN model achieved independent feature extraction of single-channel signals, characteristic fusion of each channel signal, and signal classification based on an integrated feature matrix. This approach maintained characteristic combination relationships that improved serial modes for existing RNN multi-channel signal processing, reduced the loss of structural feature information, and improved the representation ability of combined feature in local time region and the efficiency of the algorithm. In this paper, the properties of the proposed P-RNN are analyzed and a comprehensive learning algorithm is developed. Seven disease classification types commonly diagnosed using 12-lead ECG signals were used to validate the technique experimentally. Results showed the computational efficiency improved by a factor of 11.519, compared with existing RNN serial processing times, producing a correct recognition rate of 95.976%. In particular, the resolution of signal samples with similar distribution characteristics improved significantly, which demonstrates the effectiveness of the proposed technique." @default.
- W2969929892 created "2019-08-29" @default.
- W2969929892 creator A5013617878 @default.
- W2969929892 creator A5045075979 @default.
- W2969929892 creator A5063303592 @default.
- W2969929892 creator A5079048949 @default.
- W2969929892 date "2019-01-01" @default.
- W2969929892 modified "2023-10-12" @default.
- W2969929892 title "A Parallel GRU Recurrent Network Model and its Application to Multi-Channel Time-Varying Signal Classification" @default.
- W2969929892 cites W119403003 @default.
- W2969929892 cites W1473852543 @default.
- W2969929892 cites W1498436455 @default.
- W2969929892 cites W1973676661 @default.
- W2969929892 cites W1987599089 @default.
- W2969929892 cites W2062681604 @default.
- W2969929892 cites W2064675550 @default.
- W2969929892 cites W2066226976 @default.
- W2969929892 cites W2105594594 @default.
- W2969929892 cites W2117251170 @default.
- W2969929892 cites W2118706537 @default.
- W2969929892 cites W2131774270 @default.
- W2969929892 cites W2140090592 @default.
- W2969929892 cites W2143612262 @default.
- W2969929892 cites W2151542770 @default.
- W2969929892 cites W2154997814 @default.
- W2969929892 cites W2160986881 @default.
- W2969929892 cites W2163430278 @default.
- W2969929892 cites W2365457334 @default.
- W2969929892 cites W2512965516 @default.
- W2969929892 cites W2513874664 @default.
- W2969929892 cites W2702116941 @default.
- W2969929892 cites W2734657638 @default.
- W2969929892 cites W2754051771 @default.
- W2969929892 cites W2790624867 @default.
- W2969929892 cites W2887400294 @default.
- W2969929892 cites W2944401411 @default.
- W2969929892 cites W2963211739 @default.
- W2969929892 cites W2963599029 @default.
- W2969929892 cites W2964199361 @default.
- W2969929892 cites W4254816979 @default.
- W2969929892 cites W789477479 @default.
- W2969929892 doi "https://doi.org/10.1109/access.2019.2936516" @default.
- W2969929892 hasPublicationYear "2019" @default.
- W2969929892 type Work @default.
- W2969929892 sameAs 2969929892 @default.
- W2969929892 citedByCount "18" @default.
- W2969929892 countsByYear W29699298922019 @default.
- W2969929892 countsByYear W29699298922020 @default.
- W2969929892 countsByYear W29699298922021 @default.
- W2969929892 countsByYear W29699298922022 @default.
- W2969929892 countsByYear W29699298922023 @default.
- W2969929892 crossrefType "journal-article" @default.
- W2969929892 hasAuthorship W2969929892A5013617878 @default.
- W2969929892 hasAuthorship W2969929892A5045075979 @default.
- W2969929892 hasAuthorship W2969929892A5063303592 @default.
- W2969929892 hasAuthorship W2969929892A5079048949 @default.
- W2969929892 hasBestOaLocation W29699298921 @default.
- W2969929892 hasConcept C104267543 @default.
- W2969929892 hasConcept C127162648 @default.
- W2969929892 hasConcept C153180895 @default.
- W2969929892 hasConcept C154945302 @default.
- W2969929892 hasConcept C199360897 @default.
- W2969929892 hasConcept C2779843651 @default.
- W2969929892 hasConcept C28490314 @default.
- W2969929892 hasConcept C31258907 @default.
- W2969929892 hasConcept C41008148 @default.
- W2969929892 hasConcept C84462506 @default.
- W2969929892 hasConcept C9390403 @default.
- W2969929892 hasConceptScore W2969929892C104267543 @default.
- W2969929892 hasConceptScore W2969929892C127162648 @default.
- W2969929892 hasConceptScore W2969929892C153180895 @default.
- W2969929892 hasConceptScore W2969929892C154945302 @default.
- W2969929892 hasConceptScore W2969929892C199360897 @default.
- W2969929892 hasConceptScore W2969929892C2779843651 @default.
- W2969929892 hasConceptScore W2969929892C28490314 @default.
- W2969929892 hasConceptScore W2969929892C31258907 @default.
- W2969929892 hasConceptScore W2969929892C41008148 @default.
- W2969929892 hasConceptScore W2969929892C84462506 @default.
- W2969929892 hasConceptScore W2969929892C9390403 @default.
- W2969929892 hasFunder F4320335777 @default.
- W2969929892 hasLocation W29699298921 @default.
- W2969929892 hasOpenAccess W2969929892 @default.
- W2969929892 hasPrimaryLocation W29699298921 @default.
- W2969929892 hasRelatedWork W2033914206 @default.
- W2969929892 hasRelatedWork W2146076056 @default.
- W2969929892 hasRelatedWork W2163831990 @default.
- W2969929892 hasRelatedWork W2368779261 @default.
- W2969929892 hasRelatedWork W2378160586 @default.
- W2969929892 hasRelatedWork W2794438528 @default.
- W2969929892 hasRelatedWork W2893763841 @default.
- W2969929892 hasRelatedWork W3003836766 @default.
- W2969929892 hasRelatedWork W3107474891 @default.
- W2969929892 hasRelatedWork W4210759510 @default.
- W2969929892 hasVolume "7" @default.
- W2969929892 isParatext "false" @default.
- W2969929892 isRetracted "false" @default.
- W2969929892 magId "2969929892" @default.
- W2969929892 workType "article" @default.