Matches in SemOpenAlex for { <https://semopenalex.org/work/W2970068460> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2970068460 abstract "Over the course of the last decade single-cell RNA sequencing (scRNA-seq) has revolutionized the study of cellular heterogeneity, as one experiment routinely covers the expression of thousands of genes in tens or hundreds of thousands of cells. By quantifying differences between the single cell transcriptomes it is possible to reconstruct the process that gives rise to different cell fates from a progenitor population and gain access to trajectories of gene expression over developmental time. Tree reconstruction algorithms must deal with the high levels of noise, the high dimensionality of gene expression space, and strong non-linear dependencies between genes. In this thesis we address three aspects of working with scRNA-seq data: (1) lineage tree reconstruction, where we propose MERLoT, a novel trajectory inference method, (2) method comparison, where we propose PROSSTT, a novel algorithm that simulates scRNA-seq count data of complex differentiation trajectories, and (3) noise modelling, where we propose a novel probabilistic description of count data, a statistically motivated local averaging strategy, and an adaptation of the cross validation approach for the evaluation of gene expression imputation strategies. While statistical modelling of the data was our primary motivation, due to time constraints we did not manage to fully realize our plans for it. Increasingly complex processes like whole-organism development are being studied by single-cell transcriptomics, producing large amounts of data. Methods for trajectory inference must therefore efficiently reconstruct textit{a priori} unknown lineage trees with many cell fates. We propose MERLoT, a method that can reconstruct trees in sub-quadratic time by utilizing a local averaging strategy, scaling very well on large datasets. MERLoT compares favorably to the state of the art, both on real data and a large synthetic benchmark. The absence of data with known complex underlying topologies makes it challenging to quantitatively compare tree reconstruction methods to each other. PROSSTT is a novel algorithm that simulates count data from complex differentiation processes, facilitating comparisons between algorithms. We created the largest synthetic dataset to-date, and the first to contain simulations with up to 12 cell fates. Additionally, PROSSTT can learn simulation parameters from reconstructed lineage trees and produce cells with expression profiles similar to the real data. Quantifying similarity between single-cell transcriptomes is crucial for clustering scRNA-seq profiles to cell types or inferring developmental trajectories, and appropriate statistical modelling of the data should improve such similarity calculations. We propose a Gaussian mixture of negative binomial distributions where gene expression variance depends on the square of the average expression. The model hyperparameters can be learned via the hybrid Monte Carlo algorithm, and a good initialization of average expression and variance parameters can be obtained by trajectory inference. A way to limit noise in the data is to apply local averaging, using the nearest neighbours of each cell to recover expression of non-captured mRNA. Our proposal, nearest neighbour smoothing with optimal bias-variance trade-off, optimizes the k-nearest neighbours approach by reducing the contribution of inappropriate neighbours. We also propose a way to assess the quality of gene expression imputation. After reconstructing a trajectory with imputed data, each cell can be projected to the trajectory using non-overlapping subsets of genes. The robustness of these assignments over multiple partitions of the genes is a novel estimator of imputation performance. Finally, I was involved in the planning and initial stages of a mouse ovary cell atlas as a collaboration." @default.
- W2970068460 created "2019-09-05" @default.
- W2970068460 creator A5060933877 @default.
- W2970068460 date "2022-02-21" @default.
- W2970068460 modified "2023-10-14" @default.
- W2970068460 title "Understanding cellular differentiation by modelling of single-cell gene expression data" @default.
- W2970068460 doi "https://doi.org/10.53846/goediss-7605" @default.
- W2970068460 hasPublicationYear "2022" @default.
- W2970068460 type Work @default.
- W2970068460 sameAs 2970068460 @default.
- W2970068460 citedByCount "0" @default.
- W2970068460 crossrefType "dissertation" @default.
- W2970068460 hasAuthorship W2970068460A5060933877 @default.
- W2970068460 hasBestOaLocation W29700684601 @default.
- W2970068460 hasConcept C111472728 @default.
- W2970068460 hasConcept C113174947 @default.
- W2970068460 hasConcept C11413529 @default.
- W2970068460 hasConcept C124101348 @default.
- W2970068460 hasConcept C134306372 @default.
- W2970068460 hasConcept C138885662 @default.
- W2970068460 hasConcept C144024400 @default.
- W2970068460 hasConcept C149923435 @default.
- W2970068460 hasConcept C154945302 @default.
- W2970068460 hasConcept C199360897 @default.
- W2970068460 hasConcept C2776214188 @default.
- W2970068460 hasConcept C2908647359 @default.
- W2970068460 hasConcept C33923547 @default.
- W2970068460 hasConcept C41008148 @default.
- W2970068460 hasConcept C49937458 @default.
- W2970068460 hasConcept C70721500 @default.
- W2970068460 hasConcept C75553542 @default.
- W2970068460 hasConcept C86803240 @default.
- W2970068460 hasConcept C90559484 @default.
- W2970068460 hasConceptScore W2970068460C111472728 @default.
- W2970068460 hasConceptScore W2970068460C113174947 @default.
- W2970068460 hasConceptScore W2970068460C11413529 @default.
- W2970068460 hasConceptScore W2970068460C124101348 @default.
- W2970068460 hasConceptScore W2970068460C134306372 @default.
- W2970068460 hasConceptScore W2970068460C138885662 @default.
- W2970068460 hasConceptScore W2970068460C144024400 @default.
- W2970068460 hasConceptScore W2970068460C149923435 @default.
- W2970068460 hasConceptScore W2970068460C154945302 @default.
- W2970068460 hasConceptScore W2970068460C199360897 @default.
- W2970068460 hasConceptScore W2970068460C2776214188 @default.
- W2970068460 hasConceptScore W2970068460C2908647359 @default.
- W2970068460 hasConceptScore W2970068460C33923547 @default.
- W2970068460 hasConceptScore W2970068460C41008148 @default.
- W2970068460 hasConceptScore W2970068460C49937458 @default.
- W2970068460 hasConceptScore W2970068460C70721500 @default.
- W2970068460 hasConceptScore W2970068460C75553542 @default.
- W2970068460 hasConceptScore W2970068460C86803240 @default.
- W2970068460 hasConceptScore W2970068460C90559484 @default.
- W2970068460 hasLocation W29700684601 @default.
- W2970068460 hasOpenAccess W2970068460 @default.
- W2970068460 hasPrimaryLocation W29700684601 @default.
- W2970068460 hasRelatedWork W1558314353 @default.
- W2970068460 hasRelatedWork W1997380360 @default.
- W2970068460 hasRelatedWork W2022600731 @default.
- W2970068460 hasRelatedWork W2358841807 @default.
- W2970068460 hasRelatedWork W2381031055 @default.
- W2970068460 hasRelatedWork W2381066679 @default.
- W2970068460 hasRelatedWork W2533169899 @default.
- W2970068460 hasRelatedWork W2953177363 @default.
- W2970068460 hasRelatedWork W4290792893 @default.
- W2970068460 hasRelatedWork W2155323606 @default.
- W2970068460 isParatext "false" @default.
- W2970068460 isRetracted "false" @default.
- W2970068460 magId "2970068460" @default.
- W2970068460 workType "dissertation" @default.