Matches in SemOpenAlex for { <https://semopenalex.org/work/W2970208049> ?p ?o ?g. }
- W2970208049 abstract "We determine the caloric curves of classical self-gravitating systems at statistical equilibrium in general relativity. In the classical limit, the caloric curves of a self-gravitating gas depend on a unique parameter $ensuremath{nu}=GNm/R{c}^{2}$, called the compactness parameter, where $N$ is the particle number and $R$ the system's size. Typically, the caloric curves have the form of a double spiral. The ``cold spiral,'' corresponding to weakly relativistic configurations, is a generalization of the caloric curve of nonrelativistic classical self-gravitating systems. The ``hot spiral,'' corresponding to strongly relativistic configurations, is similar (but not identical) to the caloric curve of the ultrarelativistic self-gravitating black-body radiation. We introduce two types of normalization of energy and temperature to obtain asymptotic caloric curves describing, respectively, the cold and the hot spirals in the limit $ensuremath{nu}ensuremath{rightarrow}0$. As the number of particles increases, the cold and the hot spirals approach each other, merge at ${ensuremath{nu}}_{S}^{ensuremath{'}}=0.128$, form a loop above ${ensuremath{nu}}_{S}=0.1415$, reduce to a point at ${ensuremath{nu}}_{mathrm{max}}=0.1764$, and finally disappear. Therefore, the double spiral shrinks when the compactness parameter $ensuremath{nu}$ increases, implying that general relativistic effects render the system more unstable. We discuss the nature of the gravitational collapse at low and high energies with respect to a dynamical (fast) or a thermodynamical (slow) instability. We also provide an historical account of the developments of the statistical mechanics of classical self-gravitating systems in Newtonian gravity and general relativity." @default.
- W2970208049 created "2019-09-05" @default.
- W2970208049 creator A5007478460 @default.
- W2970208049 creator A5083882693 @default.
- W2970208049 date "2020-05-11" @default.
- W2970208049 modified "2023-10-12" @default.
- W2970208049 title "Caloric curves of classical self-gravitating systems in general relativity" @default.
- W2970208049 cites W119119258 @default.
- W2970208049 cites W1555798803 @default.
- W2970208049 cites W1558256329 @default.
- W2970208049 cites W1964689827 @default.
- W2970208049 cites W1966244601 @default.
- W2970208049 cites W1969056281 @default.
- W2970208049 cites W1971037827 @default.
- W2970208049 cites W1971154415 @default.
- W2970208049 cites W1971861639 @default.
- W2970208049 cites W1972292127 @default.
- W2970208049 cites W1974428826 @default.
- W2970208049 cites W1975252632 @default.
- W2970208049 cites W1977682361 @default.
- W2970208049 cites W1978139591 @default.
- W2970208049 cites W1978508475 @default.
- W2970208049 cites W1979220422 @default.
- W2970208049 cites W1979697570 @default.
- W2970208049 cites W1980321320 @default.
- W2970208049 cites W1980980849 @default.
- W2970208049 cites W1981647249 @default.
- W2970208049 cites W1982200732 @default.
- W2970208049 cites W1982872866 @default.
- W2970208049 cites W1984333829 @default.
- W2970208049 cites W1984452935 @default.
- W2970208049 cites W1985610496 @default.
- W2970208049 cites W1986229847 @default.
- W2970208049 cites W1986348618 @default.
- W2970208049 cites W1986579843 @default.
- W2970208049 cites W1988097922 @default.
- W2970208049 cites W1988371744 @default.
- W2970208049 cites W1989234757 @default.
- W2970208049 cites W1989817351 @default.
- W2970208049 cites W1993884047 @default.
- W2970208049 cites W1994445613 @default.
- W2970208049 cites W1994575593 @default.
- W2970208049 cites W1995648528 @default.
- W2970208049 cites W1996837351 @default.
- W2970208049 cites W1996916943 @default.
- W2970208049 cites W1998904626 @default.
- W2970208049 cites W2001018500 @default.
- W2970208049 cites W2001100422 @default.
- W2970208049 cites W2002253035 @default.
- W2970208049 cites W2004301783 @default.
- W2970208049 cites W2005551512 @default.
- W2970208049 cites W2006109653 @default.
- W2970208049 cites W2007225460 @default.
- W2970208049 cites W2007383070 @default.
- W2970208049 cites W2008170858 @default.
- W2970208049 cites W2009167994 @default.
- W2970208049 cites W2011267998 @default.
- W2970208049 cites W2011720321 @default.
- W2970208049 cites W2017838468 @default.
- W2970208049 cites W2019633889 @default.
- W2970208049 cites W2019709453 @default.
- W2970208049 cites W2022487148 @default.
- W2970208049 cites W2022889885 @default.
- W2970208049 cites W2023381438 @default.
- W2970208049 cites W2023725166 @default.
- W2970208049 cites W2026545869 @default.
- W2970208049 cites W2027078849 @default.
- W2970208049 cites W2028307646 @default.
- W2970208049 cites W2028352386 @default.
- W2970208049 cites W2029332888 @default.
- W2970208049 cites W2030302866 @default.
- W2970208049 cites W2033505556 @default.
- W2970208049 cites W2033923480 @default.
- W2970208049 cites W2035528766 @default.
- W2970208049 cites W2036111277 @default.
- W2970208049 cites W2036186127 @default.
- W2970208049 cites W2036662279 @default.
- W2970208049 cites W2038980259 @default.
- W2970208049 cites W2039852939 @default.
- W2970208049 cites W2041508062 @default.
- W2970208049 cites W2041835287 @default.
- W2970208049 cites W2042315738 @default.
- W2970208049 cites W2042579261 @default.
- W2970208049 cites W2044122013 @default.
- W2970208049 cites W2044143113 @default.
- W2970208049 cites W2044318304 @default.
- W2970208049 cites W2044552592 @default.
- W2970208049 cites W2045905496 @default.
- W2970208049 cites W2047073522 @default.
- W2970208049 cites W2050419536 @default.
- W2970208049 cites W2050747421 @default.
- W2970208049 cites W2052331098 @default.
- W2970208049 cites W2052811893 @default.
- W2970208049 cites W2056700372 @default.
- W2970208049 cites W2057294158 @default.
- W2970208049 cites W2058035960 @default.
- W2970208049 cites W2058667020 @default.
- W2970208049 cites W2059636942 @default.
- W2970208049 cites W2060657554 @default.
- W2970208049 cites W2061966006 @default.