Matches in SemOpenAlex for { <https://semopenalex.org/work/W2970222831> ?p ?o ?g. }
- W2970222831 endingPage "259" @default.
- W2970222831 startingPage "247" @default.
- W2970222831 abstract "Iceberg distribution, dispersion and melting patterns are fundamental aspects in the balance of heat and freshwater in the Southern Ocean; yet these features are not fully understood. This lack of understanding is, in part, due to the difficulties in accurately identifying icebergs in different environmental conditions. To improve the understanding, reliable iceberg detection tools are necessary to achieve a detailed picture of iceberg drift and disintegration patterns, an thus to gain further information on the freshwater input into the Southern Ocean. Here, we present an accurate automatic large-scale iceberg detection method using an alternative machine learning architecture applied to high resolution Synthetic Aperture Radar (SAR) images. Our method is based on the concept of adaptability and focuses on improving the performance of identifying icebergs in ambiguous environmental contexts with wide radiometric, textural, size and shape variability. The fundamentals of the method are centred on superpixel segmentation, ensemble learning and incremental learning. The method is applied to a dataset containing 586 ENVISAT Advanced SAR images acquired during 2003–2005 (Weddell Sea region) and to the Radarsat-1 Antarctic Mapping Project (RAMP) mosaic, covering the Antarctic wide near-coastal zone. These images cover scenes under heterogenous backscattering signatures for all seasons with variable meteorological, oceanographic and acquisition parameters (e.g. band, polarization). Our method is highly adaptable to distinguish icebergs from ambiguous objects hidden in the images. The average false positive rate and miss rate are 2.3 ± 0.4% and 3.3 ± 0.4%, respectively. Overall, 9512 icebergs with sizes varying from 0.1 to 4567.82 km2 are detected with average classification accuracy of 97.5 ± 0.6%. The results confirm that the method presented here is robust for widespread iceberg detection in the Antarctic seas." @default.
- W2970222831 created "2019-09-05" @default.
- W2970222831 creator A5052862250 @default.
- W2970222831 creator A5068664163 @default.
- W2970222831 creator A5079613529 @default.
- W2970222831 creator A5089307502 @default.
- W2970222831 date "2019-10-01" @default.
- W2970222831 modified "2023-10-15" @default.
- W2970222831 title "An adaptive machine learning approach to improve automatic iceberg detection from SAR images" @default.
- W2970222831 cites W149481953 @default.
- W2970222831 cites W1498990849 @default.
- W2970222831 cites W1534477342 @default.
- W2970222831 cites W1570779274 @default.
- W2970222831 cites W1967298254 @default.
- W2970222831 cites W1970834152 @default.
- W2970222831 cites W1971925845 @default.
- W2970222831 cites W1976927002 @default.
- W2970222831 cites W1977541554 @default.
- W2970222831 cites W1977647370 @default.
- W2970222831 cites W1979392322 @default.
- W2970222831 cites W1990653740 @default.
- W2970222831 cites W1993331306 @default.
- W2970222831 cites W1995507117 @default.
- W2970222831 cites W1996061706 @default.
- W2970222831 cites W1998152863 @default.
- W2970222831 cites W1999392948 @default.
- W2970222831 cites W1999478155 @default.
- W2970222831 cites W2006834551 @default.
- W2970222831 cites W2010708579 @default.
- W2970222831 cites W2022555621 @default.
- W2970222831 cites W2026190485 @default.
- W2970222831 cites W2026849320 @default.
- W2970222831 cites W2044465660 @default.
- W2970222831 cites W2057600133 @default.
- W2970222831 cites W2057771708 @default.
- W2970222831 cites W2059217921 @default.
- W2970222831 cites W2066249264 @default.
- W2970222831 cites W2067191022 @default.
- W2970222831 cites W2078784462 @default.
- W2970222831 cites W2109450334 @default.
- W2970222831 cites W2112973039 @default.
- W2970222831 cites W2118246710 @default.
- W2970222831 cites W2132927647 @default.
- W2970222831 cites W2139086914 @default.
- W2970222831 cites W2149495038 @default.
- W2970222831 cites W2162954075 @default.
- W2970222831 cites W2167917621 @default.
- W2970222831 cites W2171921850 @default.
- W2970222831 cites W2261059368 @default.
- W2970222831 cites W2338295169 @default.
- W2970222831 cites W2345050801 @default.
- W2970222831 cites W2411546627 @default.
- W2970222831 cites W2464472887 @default.
- W2970222831 cites W2549499983 @default.
- W2970222831 cites W2610921592 @default.
- W2970222831 cites W2820916034 @default.
- W2970222831 cites W2911964244 @default.
- W2970222831 cites W2971079997 @default.
- W2970222831 cites W4232478844 @default.
- W2970222831 doi "https://doi.org/10.1016/j.isprsjprs.2019.08.015" @default.
- W2970222831 hasPublicationYear "2019" @default.
- W2970222831 type Work @default.
- W2970222831 sameAs 2970222831 @default.
- W2970222831 citedByCount "31" @default.
- W2970222831 countsByYear W29702228312019 @default.
- W2970222831 countsByYear W29702228312020 @default.
- W2970222831 countsByYear W29702228312021 @default.
- W2970222831 countsByYear W29702228312022 @default.
- W2970222831 countsByYear W29702228312023 @default.
- W2970222831 crossrefType "journal-article" @default.
- W2970222831 hasAuthorship W2970222831A5052862250 @default.
- W2970222831 hasAuthorship W2970222831A5068664163 @default.
- W2970222831 hasAuthorship W2970222831A5079613529 @default.
- W2970222831 hasAuthorship W2970222831A5089307502 @default.
- W2970222831 hasConcept C12481700 @default.
- W2970222831 hasConcept C127313418 @default.
- W2970222831 hasConcept C136894858 @default.
- W2970222831 hasConcept C154945302 @default.
- W2970222831 hasConcept C41008148 @default.
- W2970222831 hasConcept C49204034 @default.
- W2970222831 hasConcept C62649853 @default.
- W2970222831 hasConcept C87360688 @default.
- W2970222831 hasConcept C89600930 @default.
- W2970222831 hasConceptScore W2970222831C12481700 @default.
- W2970222831 hasConceptScore W2970222831C127313418 @default.
- W2970222831 hasConceptScore W2970222831C136894858 @default.
- W2970222831 hasConceptScore W2970222831C154945302 @default.
- W2970222831 hasConceptScore W2970222831C41008148 @default.
- W2970222831 hasConceptScore W2970222831C49204034 @default.
- W2970222831 hasConceptScore W2970222831C62649853 @default.
- W2970222831 hasConceptScore W2970222831C87360688 @default.
- W2970222831 hasConceptScore W2970222831C89600930 @default.
- W2970222831 hasFunder F4320321091 @default.
- W2970222831 hasFunder F4320322025 @default.
- W2970222831 hasFunder F4320322502 @default.
- W2970222831 hasFunder F4320327335 @default.
- W2970222831 hasLocation W29702228311 @default.
- W2970222831 hasOpenAccess W2970222831 @default.