Matches in SemOpenAlex for { <https://semopenalex.org/work/W2970291001> ?p ?o ?g. }
- W2970291001 abstract "Let $q$ be a prime, $P geq 1$ and let $N_q(P)$ denote the number of rational primes $p leq P$ that split in the imaginary quadratic field $mathbb{Q}(sqrt{-q})$. The first part of this paper establishes various unconditional and conditional (under existence of a Siegel zero) lower bounds for $N_q(P)$ in the range $q^{1/4+varepsilon} leq P leq q$, for any fixed $varepsilon>0$. This improves upon what is implied by work of Pollack and Benli-Pollack. The second part of this paper is dedicated to proving an estimate for a bilinear form involving Weyl sums for modular square roots (equivalently Salie sums). Our estimate has a power saving in the so-called P{o}lya-Vinogradov range, and our methods involve studying an additive energy coming from quadratic residues in $mathbb{F}_q$. This bilinear form is inspired by the recent automorphic motivation: the second moment for twisted $L$-functions attached to Kohnen newforms has recently been computed by the first and fourth authors. So the third part of this paper links the above two directions together and outlines the arithmetic applications of this bilinear form. These include the equidistribution of quadratic roots of primes, products of primes, and relaxations of a conjecture of Erdos-Odlyzko-Sarkozy." @default.
- W2970291001 created "2019-09-05" @default.
- W2970291001 creator A5030033231 @default.
- W2970291001 creator A5044281552 @default.
- W2970291001 creator A5057324568 @default.
- W2970291001 creator A5081999325 @default.
- W2970291001 date "2019-08-27" @default.
- W2970291001 modified "2023-09-27" @default.
- W2970291001 title "Bilinear forms in Weyl sums for modular square roots and applications" @default.
- W2970291001 cites W148203997 @default.
- W2970291001 cites W1498769399 @default.
- W2970291001 cites W1512374421 @default.
- W2970291001 cites W1534739489 @default.
- W2970291001 cites W1607458528 @default.
- W2970291001 cites W16208591 @default.
- W2970291001 cites W1966999578 @default.
- W2970291001 cites W1972147519 @default.
- W2970291001 cites W1985754469 @default.
- W2970291001 cites W1991174092 @default.
- W2970291001 cites W2008814803 @default.
- W2970291001 cites W2009163638 @default.
- W2970291001 cites W2045288864 @default.
- W2970291001 cites W2062708552 @default.
- W2970291001 cites W2081183524 @default.
- W2970291001 cites W2089646823 @default.
- W2970291001 cites W2141950996 @default.
- W2970291001 cites W2147271516 @default.
- W2970291001 cites W2150741020 @default.
- W2970291001 cites W2275227597 @default.
- W2970291001 cites W2323125905 @default.
- W2970291001 cites W2327560704 @default.
- W2970291001 cites W2329087999 @default.
- W2970291001 cites W2329189670 @default.
- W2970291001 cites W2329842931 @default.
- W2970291001 cites W2334612034 @default.
- W2970291001 cites W2492284202 @default.
- W2970291001 cites W2575473023 @default.
- W2970291001 cites W2615567715 @default.
- W2970291001 cites W2765599893 @default.
- W2970291001 cites W2796259990 @default.
- W2970291001 cites W2921413840 @default.
- W2970291001 cites W2942579974 @default.
- W2970291001 cites W2959144793 @default.
- W2970291001 cites W2963648155 @default.
- W2970291001 cites W2964040252 @default.
- W2970291001 cites W2973546537 @default.
- W2970291001 cites W3028580367 @default.
- W2970291001 cites W3100257233 @default.
- W2970291001 cites W3105400675 @default.
- W2970291001 cites W3156084628 @default.
- W2970291001 cites W40732046 @default.
- W2970291001 cites W50161340 @default.
- W2970291001 cites W586135738 @default.
- W2970291001 cites W645185567 @default.
- W2970291001 cites W763076276 @default.
- W2970291001 cites W81617596 @default.
- W2970291001 hasPublicationYear "2019" @default.
- W2970291001 type Work @default.
- W2970291001 sameAs 2970291001 @default.
- W2970291001 citedByCount "0" @default.
- W2970291001 crossrefType "posted-content" @default.
- W2970291001 hasAuthorship W2970291001A5030033231 @default.
- W2970291001 hasAuthorship W2970291001A5044281552 @default.
- W2970291001 hasAuthorship W2970291001A5057324568 @default.
- W2970291001 hasAuthorship W2970291001A5081999325 @default.
- W2970291001 hasConcept C105795698 @default.
- W2970291001 hasConcept C114614502 @default.
- W2970291001 hasConcept C12817185 @default.
- W2970291001 hasConcept C129844170 @default.
- W2970291001 hasConcept C135692309 @default.
- W2970291001 hasConcept C159985019 @default.
- W2970291001 hasConcept C166437778 @default.
- W2970291001 hasConcept C184992742 @default.
- W2970291001 hasConcept C192562407 @default.
- W2970291001 hasConcept C202444582 @default.
- W2970291001 hasConcept C204323151 @default.
- W2970291001 hasConcept C205203396 @default.
- W2970291001 hasConcept C2524010 @default.
- W2970291001 hasConcept C2780990831 @default.
- W2970291001 hasConcept C33923547 @default.
- W2970291001 hasConcept C75764964 @default.
- W2970291001 hasConcept C77926391 @default.
- W2970291001 hasConcept C8828549 @default.
- W2970291001 hasConcept C95136341 @default.
- W2970291001 hasConceptScore W2970291001C105795698 @default.
- W2970291001 hasConceptScore W2970291001C114614502 @default.
- W2970291001 hasConceptScore W2970291001C12817185 @default.
- W2970291001 hasConceptScore W2970291001C129844170 @default.
- W2970291001 hasConceptScore W2970291001C135692309 @default.
- W2970291001 hasConceptScore W2970291001C159985019 @default.
- W2970291001 hasConceptScore W2970291001C166437778 @default.
- W2970291001 hasConceptScore W2970291001C184992742 @default.
- W2970291001 hasConceptScore W2970291001C192562407 @default.
- W2970291001 hasConceptScore W2970291001C202444582 @default.
- W2970291001 hasConceptScore W2970291001C204323151 @default.
- W2970291001 hasConceptScore W2970291001C205203396 @default.
- W2970291001 hasConceptScore W2970291001C2524010 @default.
- W2970291001 hasConceptScore W2970291001C2780990831 @default.
- W2970291001 hasConceptScore W2970291001C33923547 @default.
- W2970291001 hasConceptScore W2970291001C75764964 @default.