Matches in SemOpenAlex for { <https://semopenalex.org/work/W2970291459> ?p ?o ?g. }
- W2970291459 endingPage "18014" @default.
- W2970291459 startingPage "18002" @default.
- W2970291459 abstract "Thiosulfate dehydrogenases (TsdAs) are bidirectional bacterial di-heme enzymes that catalyze the interconversion of tetrathionate and thiosulfate at measurable rates in both directions. In contrast to our knowledge of TsdA activities, information on the redox properties in the absence of substrates is rather scant. To address this deficit, we combined magnetic CD (MCD) spectroscopy and protein film electrochemistry (PFE) in a study to resolve heme ligation and redox chemistry in two representative TsdAs. We examined the TsdAs from Campylobacter jejuni, a microaerobic human pathogen, and from the purple sulfur bacterium Allochromatium vinosum. In these organisms, the enzyme functions as a tetrathionate reductase and a thiosulfate oxidase, respectively. The active site Heme 1 in both enzymes has His/Cys ligation in the ferric and ferrous states and the midpoint potentials (Em) of the corresponding redox transformations are similar, −185 mV versus standard hydrogen electrode (SHE). However, fundamental differences are observed in the properties of the second, electron transferring, Heme 2. In C. jejuni, TsdA Heme 2 has His/Met ligation and an Em of +172 mV. In A. vinosum TsdA, Heme 2 reduction triggers a switch from His/Lys ligation (Em, −129 mV) to His/Met (Em, +266 mV), but the rates of interconversion are such that His/Lys ligation would be retained during turnover. In summary, our findings have unambiguously assigned Em values to defined axial ligand sets in TsdAs, specified the rates of Heme 2 ligand exchange in the A. vinosum enzyme, and provided information relevant to describing their catalytic mechanism(s). Thiosulfate dehydrogenases (TsdAs) are bidirectional bacterial di-heme enzymes that catalyze the interconversion of tetrathionate and thiosulfate at measurable rates in both directions. In contrast to our knowledge of TsdA activities, information on the redox properties in the absence of substrates is rather scant. To address this deficit, we combined magnetic CD (MCD) spectroscopy and protein film electrochemistry (PFE) in a study to resolve heme ligation and redox chemistry in two representative TsdAs. We examined the TsdAs from Campylobacter jejuni, a microaerobic human pathogen, and from the purple sulfur bacterium Allochromatium vinosum. In these organisms, the enzyme functions as a tetrathionate reductase and a thiosulfate oxidase, respectively. The active site Heme 1 in both enzymes has His/Cys ligation in the ferric and ferrous states and the midpoint potentials (Em) of the corresponding redox transformations are similar, −185 mV versus standard hydrogen electrode (SHE). However, fundamental differences are observed in the properties of the second, electron transferring, Heme 2. In C. jejuni, TsdA Heme 2 has His/Met ligation and an Em of +172 mV. In A. vinosum TsdA, Heme 2 reduction triggers a switch from His/Lys ligation (Em, −129 mV) to His/Met (Em, +266 mV), but the rates of interconversion are such that His/Lys ligation would be retained during turnover. In summary, our findings have unambiguously assigned Em values to defined axial ligand sets in TsdAs, specified the rates of Heme 2 ligand exchange in the A. vinosum enzyme, and provided information relevant to describing their catalytic mechanism(s)." @default.
- W2970291459 created "2019-09-05" @default.
- W2970291459 creator A5013180691 @default.
- W2970291459 creator A5021676180 @default.
- W2970291459 creator A5025652573 @default.
- W2970291459 creator A5026491082 @default.
- W2970291459 creator A5027541246 @default.
- W2970291459 creator A5070025127 @default.
- W2970291459 creator A5073318041 @default.
- W2970291459 creator A5086999153 @default.
- W2970291459 creator A5089834445 @default.
- W2970291459 date "2019-11-01" @default.
- W2970291459 modified "2023-10-11" @default.
- W2970291459 title "Heme ligation and redox chemistry in two bacterial thiosulfate dehydrogenase (TsdA) enzymes" @default.
- W2970291459 cites W118582950 @default.
- W2970291459 cites W1547662205 @default.
- W2970291459 cites W1547669320 @default.
- W2970291459 cites W1675570769 @default.
- W2970291459 cites W1975048860 @default.
- W2970291459 cites W1977238698 @default.
- W2970291459 cites W1981358030 @default.
- W2970291459 cites W1984762497 @default.
- W2970291459 cites W1988249989 @default.
- W2970291459 cites W1988335758 @default.
- W2970291459 cites W1989644067 @default.
- W2970291459 cites W1999651497 @default.
- W2970291459 cites W2000472361 @default.
- W2970291459 cites W2002217241 @default.
- W2970291459 cites W2005796859 @default.
- W2970291459 cites W2006248753 @default.
- W2970291459 cites W2006601093 @default.
- W2970291459 cites W2007081340 @default.
- W2970291459 cites W2013902418 @default.
- W2970291459 cites W2016119333 @default.
- W2970291459 cites W2020127326 @default.
- W2970291459 cites W2021013287 @default.
- W2970291459 cites W2022723808 @default.
- W2970291459 cites W2031304467 @default.
- W2970291459 cites W2036456676 @default.
- W2970291459 cites W2037148211 @default.
- W2970291459 cites W2037270587 @default.
- W2970291459 cites W2038221851 @default.
- W2970291459 cites W2043809520 @default.
- W2970291459 cites W2052181833 @default.
- W2970291459 cites W2058416203 @default.
- W2970291459 cites W2059736644 @default.
- W2970291459 cites W2065908979 @default.
- W2970291459 cites W2071593932 @default.
- W2970291459 cites W2072338280 @default.
- W2970291459 cites W2074018620 @default.
- W2970291459 cites W2074727538 @default.
- W2970291459 cites W2075974661 @default.
- W2970291459 cites W2080539762 @default.
- W2970291459 cites W2087875520 @default.
- W2970291459 cites W2089174617 @default.
- W2970291459 cites W2090555575 @default.
- W2970291459 cites W2090567763 @default.
- W2970291459 cites W2090720318 @default.
- W2970291459 cites W2091492648 @default.
- W2970291459 cites W2091904332 @default.
- W2970291459 cites W2093776720 @default.
- W2970291459 cites W2116640746 @default.
- W2970291459 cites W2128384181 @default.
- W2970291459 cites W2129761907 @default.
- W2970291459 cites W2145947173 @default.
- W2970291459 cites W2153347816 @default.
- W2970291459 cites W2206750133 @default.
- W2970291459 cites W2269577550 @default.
- W2970291459 cites W2283724121 @default.
- W2970291459 cites W2331507439 @default.
- W2970291459 cites W2337802850 @default.
- W2970291459 cites W2407275875 @default.
- W2970291459 cites W2527246344 @default.
- W2970291459 cites W2541769300 @default.
- W2970291459 cites W2563058185 @default.
- W2970291459 cites W2569193446 @default.
- W2970291459 cites W2592757476 @default.
- W2970291459 cites W2605959301 @default.
- W2970291459 cites W2735287559 @default.
- W2970291459 cites W2778741038 @default.
- W2970291459 cites W2060278800 @default.
- W2970291459 doi "https://doi.org/10.1074/jbc.ra119.010084" @default.
- W2970291459 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6879331" @default.
- W2970291459 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31467084" @default.
- W2970291459 hasPublicationYear "2019" @default.
- W2970291459 type Work @default.
- W2970291459 sameAs 2970291459 @default.
- W2970291459 citedByCount "13" @default.
- W2970291459 countsByYear W29702914592019 @default.
- W2970291459 countsByYear W29702914592020 @default.
- W2970291459 countsByYear W29702914592021 @default.
- W2970291459 countsByYear W29702914592022 @default.
- W2970291459 crossrefType "journal-article" @default.
- W2970291459 hasAuthorship W2970291459A5013180691 @default.
- W2970291459 hasAuthorship W2970291459A5021676180 @default.
- W2970291459 hasAuthorship W2970291459A5025652573 @default.
- W2970291459 hasAuthorship W2970291459A5026491082 @default.
- W2970291459 hasAuthorship W2970291459A5027541246 @default.