Matches in SemOpenAlex for { <https://semopenalex.org/work/W2970469194> ?p ?o ?g. }
- W2970469194 endingPage "106314" @default.
- W2970469194 startingPage "106314" @default.
- W2970469194 abstract "This paper combines random forests with physics-based models to forecast the electricity output of the Mutriku wave farm on the Bay of Biscay. The period analysed was 2014–2016, and the forecast horizon was 24 h in 4-h steps. The Random Forest (RF) machine-learning technique was used, with three sets of inputs: i) the electricity generated at Mutriku, ii) the wave energy flux (WEF) prediction made by the ECMWF wave model at Mutriku's nearest gridpoint, and iii) ocean and atmospheric data for the Bay of Biscay. For this last input, extended empirical orthogonal functions (EOFs) were calculated to reduce the dimensionality of these data, while retaining most of the information. The forecasts are evaluated using the R-Squared, Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE). The model easily outperforms a persistence forecast at 8–10 h and beyond. The most accurate forecasts are achieved by using all three of these inputs. This approach may help to effectively integrate wave farms into the electricity market." @default.
- W2970469194 created "2019-09-05" @default.
- W2970469194 creator A5021815907 @default.
- W2970469194 creator A5028025095 @default.
- W2970469194 creator A5063346116 @default.
- W2970469194 creator A5086960314 @default.
- W2970469194 date "2019-10-01" @default.
- W2970469194 modified "2023-10-15" @default.
- W2970469194 title "Combining random forests and physics-based models to forecast the electricity generated by ocean waves: A case study of the Mutriku wave farm" @default.
- W2970469194 cites W1678012523 @default.
- W2970469194 cites W1980773453 @default.
- W2970469194 cites W1989398939 @default.
- W2970469194 cites W1995379770 @default.
- W2970469194 cites W2000811263 @default.
- W2970469194 cites W2012580522 @default.
- W2970469194 cites W2012731639 @default.
- W2970469194 cites W2019692803 @default.
- W2970469194 cites W2022831624 @default.
- W2970469194 cites W2024523255 @default.
- W2970469194 cites W2028873346 @default.
- W2970469194 cites W2031032025 @default.
- W2970469194 cites W2036918711 @default.
- W2970469194 cites W2039306928 @default.
- W2970469194 cites W2044259228 @default.
- W2970469194 cites W2046514232 @default.
- W2970469194 cites W2051764948 @default.
- W2970469194 cites W2061079172 @default.
- W2970469194 cites W2067718885 @default.
- W2970469194 cites W2070656221 @default.
- W2970469194 cites W2074511771 @default.
- W2970469194 cites W2080994329 @default.
- W2970469194 cites W2101664201 @default.
- W2970469194 cites W2103828239 @default.
- W2970469194 cites W2118128482 @default.
- W2970469194 cites W2153947402 @default.
- W2970469194 cites W2177291244 @default.
- W2970469194 cites W2195613835 @default.
- W2970469194 cites W2260261703 @default.
- W2970469194 cites W2262481746 @default.
- W2970469194 cites W2338231975 @default.
- W2970469194 cites W2467506082 @default.
- W2970469194 cites W2548644148 @default.
- W2970469194 cites W2574563668 @default.
- W2970469194 cites W2605614336 @default.
- W2970469194 cites W2760434143 @default.
- W2970469194 cites W2766033916 @default.
- W2970469194 cites W2790021805 @default.
- W2970469194 cites W2793688347 @default.
- W2970469194 cites W2800005016 @default.
- W2970469194 cites W2802086687 @default.
- W2970469194 cites W2803593768 @default.
- W2970469194 cites W2911964244 @default.
- W2970469194 cites W794178116 @default.
- W2970469194 doi "https://doi.org/10.1016/j.oceaneng.2019.106314" @default.
- W2970469194 hasPublicationYear "2019" @default.
- W2970469194 type Work @default.
- W2970469194 sameAs 2970469194 @default.
- W2970469194 citedByCount "26" @default.
- W2970469194 countsByYear W29704691942019 @default.
- W2970469194 countsByYear W29704691942020 @default.
- W2970469194 countsByYear W29704691942021 @default.
- W2970469194 countsByYear W29704691942022 @default.
- W2970469194 countsByYear W29704691942023 @default.
- W2970469194 crossrefType "journal-article" @default.
- W2970469194 hasAuthorship W2970469194A5021815907 @default.
- W2970469194 hasAuthorship W2970469194A5028025095 @default.
- W2970469194 hasAuthorship W2970469194A5063346116 @default.
- W2970469194 hasAuthorship W2970469194A5086960314 @default.
- W2970469194 hasBestOaLocation W29704691942 @default.
- W2970469194 hasConcept C105795698 @default.
- W2970469194 hasConcept C111030470 @default.
- W2970469194 hasConcept C111368507 @default.
- W2970469194 hasConcept C115880899 @default.
- W2970469194 hasConcept C121332964 @default.
- W2970469194 hasConcept C127313418 @default.
- W2970469194 hasConcept C139945424 @default.
- W2970469194 hasConcept C149782125 @default.
- W2970469194 hasConcept C150217764 @default.
- W2970469194 hasConcept C153294291 @default.
- W2970469194 hasConcept C154945302 @default.
- W2970469194 hasConcept C165082838 @default.
- W2970469194 hasConcept C169258074 @default.
- W2970469194 hasConcept C206658404 @default.
- W2970469194 hasConcept C33923547 @default.
- W2970469194 hasConcept C39432304 @default.
- W2970469194 hasConcept C41008148 @default.
- W2970469194 hasConcept C62520636 @default.
- W2970469194 hasConceptScore W2970469194C105795698 @default.
- W2970469194 hasConceptScore W2970469194C111030470 @default.
- W2970469194 hasConceptScore W2970469194C111368507 @default.
- W2970469194 hasConceptScore W2970469194C115880899 @default.
- W2970469194 hasConceptScore W2970469194C121332964 @default.
- W2970469194 hasConceptScore W2970469194C127313418 @default.
- W2970469194 hasConceptScore W2970469194C139945424 @default.
- W2970469194 hasConceptScore W2970469194C149782125 @default.
- W2970469194 hasConceptScore W2970469194C150217764 @default.
- W2970469194 hasConceptScore W2970469194C153294291 @default.
- W2970469194 hasConceptScore W2970469194C154945302 @default.