Matches in SemOpenAlex for { <https://semopenalex.org/work/W2970545551> ?p ?o ?g. }
- W2970545551 endingPage "1985" @default.
- W2970545551 startingPage "1982" @default.
- W2970545551 abstract "The proliferation in amounts of generated data has propelled the rise of scalable machine learning solutions to efficiently analyze and extract useful insights from such data. Meanwhile, spatial data has become ubiquitous, e.g., GPS data, with increasingly sheer sizes in recent years. The applications of big spatial data span a wide spectrum of interests including tracking infectious disease, climate change simulation, drug addiction, among others. Consequently, major research efforts are exerted to support efficient analysis and intelligence inside these applications by either providing spatial extensions to existing machine learning solutions or building new solutions from scratch. In this 90-minutes tutorial, we comprehensively review the state-of-the-art work in the intersection of machine learning and big spatial data. We cover existing research efforts and challenges in three major areas of machine learning, namely, data analysis, deep learning and statistical inference, as well as two advanced spatial machine learning tasks, namely, spatial features extraction and spatial sampling. We also highlight open problems and challenges for future research in this area." @default.
- W2970545551 created "2019-09-05" @default.
- W2970545551 creator A5007454642 @default.
- W2970545551 creator A5062053667 @default.
- W2970545551 date "2019-08-01" @default.
- W2970545551 modified "2023-09-25" @default.
- W2970545551 title "Machine learning meets big spatial data" @default.
- W2970545551 cites W1934084512 @default.
- W2970545551 cites W2002643280 @default.
- W2970545551 cites W2008196645 @default.
- W2970545551 cites W2024200859 @default.
- W2970545551 cites W2044849727 @default.
- W2970545551 cites W2057117782 @default.
- W2970545551 cites W2088340438 @default.
- W2970545551 cites W2094174879 @default.
- W2970545551 cites W2095897464 @default.
- W2970545551 cites W2099655235 @default.
- W2970545551 cites W2135209143 @default.
- W2970545551 cites W2141267666 @default.
- W2970545551 cites W2147330627 @default.
- W2970545551 cites W2169043705 @default.
- W2970545551 cites W2169865822 @default.
- W2970545551 cites W2202100984 @default.
- W2970545551 cites W2293308125 @default.
- W2970545551 cites W2436533802 @default.
- W2970545551 cites W2547825280 @default.
- W2970545551 cites W2586209592 @default.
- W2970545551 cites W2591700809 @default.
- W2970545551 cites W2612139288 @default.
- W2970545551 cites W2613621736 @default.
- W2970545551 cites W2744312209 @default.
- W2970545551 cites W2751336567 @default.
- W2970545551 cites W2785799516 @default.
- W2970545551 cites W2798528367 @default.
- W2970545551 cites W2798903611 @default.
- W2970545551 cites W2799225186 @default.
- W2970545551 cites W2799249922 @default.
- W2970545551 cites W2894608628 @default.
- W2970545551 cites W2897711619 @default.
- W2970545551 cites W2900880306 @default.
- W2970545551 cites W2901165057 @default.
- W2970545551 cites W2913584032 @default.
- W2970545551 cites W2971072031 @default.
- W2970545551 cites W3175413200 @default.
- W2970545551 cites W4229511220 @default.
- W2970545551 cites W2900946037 @default.
- W2970545551 doi "https://doi.org/10.14778/3352063.3352115" @default.
- W2970545551 hasPublicationYear "2019" @default.
- W2970545551 type Work @default.
- W2970545551 sameAs 2970545551 @default.
- W2970545551 citedByCount "9" @default.
- W2970545551 countsByYear W29705455512020 @default.
- W2970545551 countsByYear W29705455512021 @default.
- W2970545551 countsByYear W29705455512022 @default.
- W2970545551 countsByYear W29705455512023 @default.
- W2970545551 crossrefType "journal-article" @default.
- W2970545551 hasAuthorship W2970545551A5007454642 @default.
- W2970545551 hasAuthorship W2970545551A5062053667 @default.
- W2970545551 hasConcept C108583219 @default.
- W2970545551 hasConcept C119857082 @default.
- W2970545551 hasConcept C124101348 @default.
- W2970545551 hasConcept C154945302 @default.
- W2970545551 hasConcept C159620131 @default.
- W2970545551 hasConcept C205649164 @default.
- W2970545551 hasConcept C2522767166 @default.
- W2970545551 hasConcept C41008148 @default.
- W2970545551 hasConcept C48044578 @default.
- W2970545551 hasConcept C62649853 @default.
- W2970545551 hasConcept C75684735 @default.
- W2970545551 hasConcept C77088390 @default.
- W2970545551 hasConceptScore W2970545551C108583219 @default.
- W2970545551 hasConceptScore W2970545551C119857082 @default.
- W2970545551 hasConceptScore W2970545551C124101348 @default.
- W2970545551 hasConceptScore W2970545551C154945302 @default.
- W2970545551 hasConceptScore W2970545551C159620131 @default.
- W2970545551 hasConceptScore W2970545551C205649164 @default.
- W2970545551 hasConceptScore W2970545551C2522767166 @default.
- W2970545551 hasConceptScore W2970545551C41008148 @default.
- W2970545551 hasConceptScore W2970545551C48044578 @default.
- W2970545551 hasConceptScore W2970545551C62649853 @default.
- W2970545551 hasConceptScore W2970545551C75684735 @default.
- W2970545551 hasConceptScore W2970545551C77088390 @default.
- W2970545551 hasIssue "12" @default.
- W2970545551 hasLocation W29705455511 @default.
- W2970545551 hasOpenAccess W2970545551 @default.
- W2970545551 hasPrimaryLocation W29705455511 @default.
- W2970545551 hasRelatedWork W2030634827 @default.
- W2970545551 hasRelatedWork W3014300295 @default.
- W2970545551 hasRelatedWork W4223943233 @default.
- W2970545551 hasRelatedWork W4225161397 @default.
- W2970545551 hasRelatedWork W4299638067 @default.
- W2970545551 hasRelatedWork W4312200629 @default.
- W2970545551 hasRelatedWork W4360585206 @default.
- W2970545551 hasRelatedWork W4364306694 @default.
- W2970545551 hasRelatedWork W4380075502 @default.
- W2970545551 hasRelatedWork W4380086463 @default.
- W2970545551 hasVolume "12" @default.
- W2970545551 isParatext "false" @default.