Matches in SemOpenAlex for { <https://semopenalex.org/work/W2970582034> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2970582034 endingPage "012045" @default.
- W2970582034 startingPage "012045" @default.
- W2970582034 abstract "Abstract Recent research on deep learning control, a new control algorithm based on machine learning able to learn deep architectures, has shown excellent performance on robots and drones. With the development of intelligent control like deep learning and reinforcement learning, accuracy, real-time, adaptability, robustness and autonomy of control algorithm have been achieved by the intelligent controls. Traditional control methods have difficulties to achieve nice performance in complex situations. Deep learning offers powerful algorithms to real-time search near-optimal controllers of lunar landing spacecraft with nonlinear dynamics. In terms of lunar landing control system, deep architectures offer the possibility to get an approximate solution of co-state equation without time-consuming iterative process. Furthermore, real-time optimal thrust during lunar landing may be derived directly through deep neural networks. As a single infrastructure for machine learning in both production and research, TensorFlow is chosen for training the deep artificial neural networks in this paper. Numerical simulations demonstrate the effectiveness of deep neural networks. The results of deep neural networks based optimal control are contrasted with traditional optimal algorithm, whose main idea is to track the pre-designed optimal trajectory by ground station. This research provides an effective approach to cope with the lunar landing problem." @default.
- W2970582034 created "2019-09-05" @default.
- W2970582034 creator A5013755620 @default.
- W2970582034 creator A5036924934 @default.
- W2970582034 creator A5037403084 @default.
- W2970582034 date "2019-08-01" @default.
- W2970582034 modified "2023-09-25" @default.
- W2970582034 title "Deep Neural Networks Based Real-time Optimal Control for Lunar Landing" @default.
- W2970582034 cites W1969705022 @default.
- W2970582034 cites W2029776687 @default.
- W2970582034 cites W2075841074 @default.
- W2970582034 cites W2076063813 @default.
- W2970582034 cites W2078457570 @default.
- W2970582034 cites W2095910574 @default.
- W2970582034 cites W2130762434 @default.
- W2970582034 cites W2162218551 @default.
- W2970582034 cites W2480742596 @default.
- W2970582034 cites W2546070262 @default.
- W2970582034 cites W2565516711 @default.
- W2970582034 doi "https://doi.org/10.1088/1757-899x/608/1/012045" @default.
- W2970582034 hasPublicationYear "2019" @default.
- W2970582034 type Work @default.
- W2970582034 sameAs 2970582034 @default.
- W2970582034 citedByCount "7" @default.
- W2970582034 countsByYear W29705820342020 @default.
- W2970582034 countsByYear W29705820342022 @default.
- W2970582034 countsByYear W29705820342023 @default.
- W2970582034 crossrefType "journal-article" @default.
- W2970582034 hasAuthorship W2970582034A5013755620 @default.
- W2970582034 hasAuthorship W2970582034A5036924934 @default.
- W2970582034 hasAuthorship W2970582034A5037403084 @default.
- W2970582034 hasBestOaLocation W29705820341 @default.
- W2970582034 hasConcept C104317684 @default.
- W2970582034 hasConcept C108583219 @default.
- W2970582034 hasConcept C126255220 @default.
- W2970582034 hasConcept C127413603 @default.
- W2970582034 hasConcept C133731056 @default.
- W2970582034 hasConcept C154945302 @default.
- W2970582034 hasConcept C177606310 @default.
- W2970582034 hasConcept C185592680 @default.
- W2970582034 hasConcept C18903297 @default.
- W2970582034 hasConcept C33923547 @default.
- W2970582034 hasConcept C41008148 @default.
- W2970582034 hasConcept C50644808 @default.
- W2970582034 hasConcept C55493867 @default.
- W2970582034 hasConcept C63479239 @default.
- W2970582034 hasConcept C86803240 @default.
- W2970582034 hasConcept C91575142 @default.
- W2970582034 hasConcept C97541855 @default.
- W2970582034 hasConceptScore W2970582034C104317684 @default.
- W2970582034 hasConceptScore W2970582034C108583219 @default.
- W2970582034 hasConceptScore W2970582034C126255220 @default.
- W2970582034 hasConceptScore W2970582034C127413603 @default.
- W2970582034 hasConceptScore W2970582034C133731056 @default.
- W2970582034 hasConceptScore W2970582034C154945302 @default.
- W2970582034 hasConceptScore W2970582034C177606310 @default.
- W2970582034 hasConceptScore W2970582034C185592680 @default.
- W2970582034 hasConceptScore W2970582034C18903297 @default.
- W2970582034 hasConceptScore W2970582034C33923547 @default.
- W2970582034 hasConceptScore W2970582034C41008148 @default.
- W2970582034 hasConceptScore W2970582034C50644808 @default.
- W2970582034 hasConceptScore W2970582034C55493867 @default.
- W2970582034 hasConceptScore W2970582034C63479239 @default.
- W2970582034 hasConceptScore W2970582034C86803240 @default.
- W2970582034 hasConceptScore W2970582034C91575142 @default.
- W2970582034 hasConceptScore W2970582034C97541855 @default.
- W2970582034 hasIssue "1" @default.
- W2970582034 hasLocation W29705820341 @default.
- W2970582034 hasOpenAccess W2970582034 @default.
- W2970582034 hasPrimaryLocation W29705820341 @default.
- W2970582034 hasRelatedWork W1575744271 @default.
- W2970582034 hasRelatedWork W1918153013 @default.
- W2970582034 hasRelatedWork W2154225694 @default.
- W2970582034 hasRelatedWork W2370900635 @default.
- W2970582034 hasRelatedWork W2371062157 @default.
- W2970582034 hasRelatedWork W2375107770 @default.
- W2970582034 hasRelatedWork W2382093988 @default.
- W2970582034 hasRelatedWork W3199020346 @default.
- W2970582034 hasRelatedWork W3211352205 @default.
- W2970582034 hasRelatedWork W4317552138 @default.
- W2970582034 hasVolume "608" @default.
- W2970582034 isParatext "false" @default.
- W2970582034 isRetracted "false" @default.
- W2970582034 magId "2970582034" @default.
- W2970582034 workType "article" @default.