Matches in SemOpenAlex for { <https://semopenalex.org/work/W2970592308> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2970592308 endingPage "60" @default.
- W2970592308 startingPage "50" @default.
- W2970592308 abstract "tl;dr: no, it cannot, at least not on average on the standard archive problems. We assess whether using six smoothing algorithms (moving average, exponential smoothing, Gaussian filter, Savitzky-Golay filter, Fourier approximation and a recursive median sieve) could be automatically applied to time series classification problems as a preprocessing step to improve the performance of three benchmark classifiers (1-Nearest Neighbour with Euclidean and Dynamic Time Warping distances, and Rotation Forest). We found no significant improvement over unsmoothed data even when we set the smoothing parameter through cross validation. We are not claiming smoothing has no worth. It has an important role in exploratory analysis and helps with specific classification problems where domain knowledge can be exploited. What we observe is that the automatic application does not help to improve classification performance and that we cannot explain the improvement of other time series classification algorithms over the baseline classifiers simply as a function of the absence of smoothing." @default.
- W2970592308 created "2019-09-05" @default.
- W2970592308 creator A5006184898 @default.
- W2970592308 creator A5052586692 @default.
- W2970592308 creator A5081063163 @default.
- W2970592308 date "2019-01-01" @default.
- W2970592308 modified "2023-10-16" @default.
- W2970592308 title "Can Automated Smoothing Significantly Improve Benchmark Time Series Classification Algorithms?" @default.
- W2970592308 cites W2091864903 @default.
- W2970592308 cites W2099115161 @default.
- W2970592308 cites W2109606373 @default.
- W2970592308 cites W2135461721 @default.
- W2970592308 cites W2148182078 @default.
- W2970592308 cites W2150757437 @default.
- W2970592308 cites W2150823344 @default.
- W2970592308 cites W2154890249 @default.
- W2970592308 cites W2524083015 @default.
- W2970592308 cites W2555077524 @default.
- W2970592308 cites W2737485708 @default.
- W2970592308 cites W2802183958 @default.
- W2970592308 cites W67158865 @default.
- W2970592308 doi "https://doi.org/10.1007/978-3-030-29859-3_5" @default.
- W2970592308 hasPublicationYear "2019" @default.
- W2970592308 type Work @default.
- W2970592308 sameAs 2970592308 @default.
- W2970592308 citedByCount "1" @default.
- W2970592308 countsByYear W29705923082022 @default.
- W2970592308 crossrefType "book-chapter" @default.
- W2970592308 hasAuthorship W2970592308A5006184898 @default.
- W2970592308 hasAuthorship W2970592308A5052586692 @default.
- W2970592308 hasAuthorship W2970592308A5081063163 @default.
- W2970592308 hasBestOaLocation W29705923082 @default.
- W2970592308 hasConcept C11413529 @default.
- W2970592308 hasConcept C119857082 @default.
- W2970592308 hasConcept C127313418 @default.
- W2970592308 hasConcept C143724316 @default.
- W2970592308 hasConcept C151730666 @default.
- W2970592308 hasConcept C154945302 @default.
- W2970592308 hasConcept C185798385 @default.
- W2970592308 hasConcept C205649164 @default.
- W2970592308 hasConcept C31972630 @default.
- W2970592308 hasConcept C3770464 @default.
- W2970592308 hasConcept C41008148 @default.
- W2970592308 hasConcept C58640448 @default.
- W2970592308 hasConceptScore W2970592308C11413529 @default.
- W2970592308 hasConceptScore W2970592308C119857082 @default.
- W2970592308 hasConceptScore W2970592308C127313418 @default.
- W2970592308 hasConceptScore W2970592308C143724316 @default.
- W2970592308 hasConceptScore W2970592308C151730666 @default.
- W2970592308 hasConceptScore W2970592308C154945302 @default.
- W2970592308 hasConceptScore W2970592308C185798385 @default.
- W2970592308 hasConceptScore W2970592308C205649164 @default.
- W2970592308 hasConceptScore W2970592308C31972630 @default.
- W2970592308 hasConceptScore W2970592308C3770464 @default.
- W2970592308 hasConceptScore W2970592308C41008148 @default.
- W2970592308 hasConceptScore W2970592308C58640448 @default.
- W2970592308 hasLocation W29705923081 @default.
- W2970592308 hasLocation W29705923082 @default.
- W2970592308 hasLocation W29705923083 @default.
- W2970592308 hasOpenAccess W2970592308 @default.
- W2970592308 hasPrimaryLocation W29705923081 @default.
- W2970592308 hasRelatedWork W112744582 @default.
- W2970592308 hasRelatedWork W1485630101 @default.
- W2970592308 hasRelatedWork W2498017833 @default.
- W2970592308 hasRelatedWork W2961085424 @default.
- W2970592308 hasRelatedWork W3081841992 @default.
- W2970592308 hasRelatedWork W3103294678 @default.
- W2970592308 hasRelatedWork W4286629047 @default.
- W2970592308 hasRelatedWork W4298130664 @default.
- W2970592308 hasRelatedWork W4306674287 @default.
- W2970592308 hasRelatedWork W4224009465 @default.
- W2970592308 isParatext "false" @default.
- W2970592308 isRetracted "false" @default.
- W2970592308 magId "2970592308" @default.
- W2970592308 workType "book-chapter" @default.