Matches in SemOpenAlex for { <https://semopenalex.org/work/W2970646403> ?p ?o ?g. }
- W2970646403 abstract "Crowd counting presents enormous challenges in the form of large variation in scales within images and across the dataset. These issues are further exacerbated in highly congested scenes. Approaches based on straightforward fusion of multi-scale features from a deep network seem to be obvious solutions to this problem. However, these fusion approaches do not yield significant improvements in the case of crowd counting in congested scenes. This is usually due to their limited abilities in effectively combining the multi-scale features for problems like crowd counting. To overcome this, we focus on how to efficiently leverage information present in different layers of the network. Specifically, we present a network that involves: (i) a multi-level bottom-top and top-bottom fusion (MBTTBF) method to combine information from shallower to deeper layers and vice versa at multiple levels, (ii) scale complementary feature extraction blocks (SCFB) involving cross-scale residual functions to explicitly enable flow of complementary features from adjacent conv layers along the fusion paths. Furthermore, in order to increase the effectiveness of the multi-scale fusion, we employ a principled way of generating scale-aware ground-truth density maps for training. Experiments conducted on three datasets that contain highly congested scenes (ShanghaiTech, UCF_CC_50, and UCF-QNRF) demonstrate that the proposed method is able to outperform several recent methods in all the datasets." @default.
- W2970646403 created "2019-09-05" @default.
- W2970646403 creator A5004716468 @default.
- W2970646403 creator A5036034054 @default.
- W2970646403 date "2019-08-28" @default.
- W2970646403 modified "2023-09-23" @default.
- W2970646403 title "Multi-Level Bottom-Top and Top-Bottom Feature Fusion for Crowd Counting" @default.
- W2970646403 cites W1878940107 @default.
- W2970646403 cites W1910776219 @default.
- W2970646403 cites W1948751323 @default.
- W2970646403 cites W1967456674 @default.
- W2970646403 cites W1976959044 @default.
- W2970646403 cites W1978232622 @default.
- W2970646403 cites W2065994824 @default.
- W2970646403 cites W2072232009 @default.
- W2970646403 cites W2079023123 @default.
- W2970646403 cites W2120815373 @default.
- W2970646403 cites W2122361470 @default.
- W2970646403 cites W2123175289 @default.
- W2970646403 cites W2130751540 @default.
- W2970646403 cites W2145983039 @default.
- W2970646403 cites W2147221461 @default.
- W2970646403 cites W2155916750 @default.
- W2970646403 cites W2202235164 @default.
- W2970646403 cites W2207893099 @default.
- W2970646403 cites W2294503962 @default.
- W2970646403 cites W2322480645 @default.
- W2970646403 cites W2394843433 @default.
- W2970646403 cites W2463631526 @default.
- W2970646403 cites W2490270993 @default.
- W2970646403 cites W2508741746 @default.
- W2970646403 cites W2517615595 @default.
- W2970646403 cites W2519281173 @default.
- W2970646403 cites W2519537448 @default.
- W2970646403 cites W2520723410 @default.
- W2970646403 cites W2520826941 @default.
- W2970646403 cites W2563296158 @default.
- W2970646403 cites W2563705555 @default.
- W2970646403 cites W2572745118 @default.
- W2970646403 cites W2579152745 @default.
- W2970646403 cites W2729018917 @default.
- W2970646403 cites W2734511492 @default.
- W2970646403 cites W2741077351 @default.
- W2970646403 cites W2788944346 @default.
- W2970646403 cites W2798489385 @default.
- W2970646403 cites W2798490576 @default.
- W2970646403 cites W2798781811 @default.
- W2970646403 cites W2798791651 @default.
- W2970646403 cites W2799247888 @default.
- W2970646403 cites W2884555738 @default.
- W2970646403 cites W2884960332 @default.
- W2970646403 cites W2886443245 @default.
- W2970646403 cites W2895051362 @default.
- W2970646403 cites W2902549641 @default.
- W2970646403 cites W2921080178 @default.
- W2970646403 cites W2955171701 @default.
- W2970646403 cites W2961566087 @default.
- W2970646403 cites W2962720716 @default.
- W2970646403 cites W2962793481 @default.
- W2970646403 cites W2962832028 @default.
- W2970646403 cites W2962835968 @default.
- W2970646403 cites W2962854645 @default.
- W2970646403 cites W2962921175 @default.
- W2970646403 cites W2963011882 @default.
- W2970646403 cites W2963035940 @default.
- W2970646403 cites W2963231953 @default.
- W2970646403 cites W2963299740 @default.
- W2970646403 cites W2963315052 @default.
- W2970646403 cites W2963377935 @default.
- W2970646403 cites W2963396070 @default.
- W2970646403 cites W2963857746 @default.
- W2970646403 cites W2964018834 @default.
- W2970646403 cites W2964209782 @default.
- W2970646403 cites W2966271765 @default.
- W2970646403 cites W2967776630 @default.
- W2970646403 cites W2980047233 @default.
- W2970646403 cites W2991434406 @default.
- W2970646403 cites W61092543 @default.
- W2970646403 hasPublicationYear "2019" @default.
- W2970646403 type Work @default.
- W2970646403 sameAs 2970646403 @default.
- W2970646403 citedByCount "3" @default.
- W2970646403 countsByYear W29706464032020 @default.
- W2970646403 countsByYear W29706464032021 @default.
- W2970646403 crossrefType "posted-content" @default.
- W2970646403 hasAuthorship W2970646403A5004716468 @default.
- W2970646403 hasAuthorship W2970646403A5036034054 @default.
- W2970646403 hasConcept C11413529 @default.
- W2970646403 hasConcept C115903868 @default.
- W2970646403 hasConcept C119857082 @default.
- W2970646403 hasConcept C120665830 @default.
- W2970646403 hasConcept C121332964 @default.
- W2970646403 hasConcept C124101348 @default.
- W2970646403 hasConcept C135798126 @default.
- W2970646403 hasConcept C138885662 @default.
- W2970646403 hasConcept C146849305 @default.
- W2970646403 hasConcept C153083717 @default.
- W2970646403 hasConcept C153180895 @default.
- W2970646403 hasConcept C154945302 @default.
- W2970646403 hasConcept C155512373 @default.