Matches in SemOpenAlex for { <https://semopenalex.org/work/W2970698888> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W2970698888 abstract "Groundwater has become scarce especially in arid and semi-arid regions but is essential for drinking, domestic purposes and for survival of human beings. It must be conserved and not used for irrigation and industrial purposes especially in areas where no surface water is available. Groundwater is rarely polluted by natural processes but often by excess use of chemical fertilizers in agriculture and/or by disposal of untreated domestic/industrial wastes. Groundwater quality can be assessed using both physical (pH, EC, TDS etc.) and chemical characteristics (volume/weight concentrations of cations and anions measured on a sufficient water sample). Before use, groundwater must be tested for its required quality especially for drinking/domestic use. Quality of groundwater is assessed using linear statistical technology (multivariate normal distribution; MND) for measured continuous random variables on each sample. Prerequisites for applying MND theory are: (i) samples are independent and belong to one homogeneous population, and (ii) all input random variables possess Gaussian density. Since chemical constituents add to a constant sum (1.0 or 100%, 1000 (per mil), 1 million, 1 billion etc.) they are NOT INDEPENDENT as desired, but possess spurious negative correlations, as well as the random variables are not Gaussian but approximately log-normal with high positive skewness. Both these defects are simultaneously eliminated by log(c/(1 − c)) pre-transformation, where c (0 < c< 1) is the fractional concentration of any constituent. As chemical constituents (cations or anions) are found in trace quantities in groundwater, the log(c/(1 − c)) transform reduces to a simpler log (c) transform as inputs to MND model. The main MND methods are PCA and FA, Multiple Regression (Correlation) for a Single Populations and MANOVA, Linear Discriminant Functions (LDFs), MANCOVA for Multiple Populations. Geochemical models provide us with expected outcomes/correlations which can be compared/contrasted with observed outcomes/correlations to take appropriate and optimal decisions. Time series/geostatistical modeling requires very large number of samples along each line of investigation, hence these methods should not be used for routine groundwater studies." @default.
- W2970698888 created "2019-09-05" @default.
- W2970698888 creator A5005615627 @default.
- W2970698888 date "2019-08-29" @default.
- W2970698888 modified "2023-09-26" @default.
- W2970698888 title "Geochemical Modelling of Groundwater Using Multivariate Normal Distribution (MND) Theory" @default.
- W2970698888 cites W1997320786 @default.
- W2970698888 cites W2000251449 @default.
- W2970698888 cites W2085977942 @default.
- W2970698888 cites W2403035479 @default.
- W2970698888 cites W2917612380 @default.
- W2970698888 cites W2940590212 @default.
- W2970698888 doi "https://doi.org/10.1007/978-981-32-9771-5_5" @default.
- W2970698888 hasPublicationYear "2019" @default.
- W2970698888 type Work @default.
- W2970698888 sameAs 2970698888 @default.
- W2970698888 citedByCount "0" @default.
- W2970698888 crossrefType "book-chapter" @default.
- W2970698888 hasAuthorship W2970698888A5005615627 @default.
- W2970698888 hasConcept C105795698 @default.
- W2970698888 hasConcept C122342681 @default.
- W2970698888 hasConcept C127313418 @default.
- W2970698888 hasConcept C144024400 @default.
- W2970698888 hasConcept C149923435 @default.
- W2970698888 hasConcept C150772632 @default.
- W2970698888 hasConcept C159390177 @default.
- W2970698888 hasConcept C161584116 @default.
- W2970698888 hasConcept C187320778 @default.
- W2970698888 hasConcept C18903297 @default.
- W2970698888 hasConcept C2908647359 @default.
- W2970698888 hasConcept C33923547 @default.
- W2970698888 hasConcept C39432304 @default.
- W2970698888 hasConcept C76177295 @default.
- W2970698888 hasConcept C76886044 @default.
- W2970698888 hasConcept C86803240 @default.
- W2970698888 hasConcept C97256817 @default.
- W2970698888 hasConceptScore W2970698888C105795698 @default.
- W2970698888 hasConceptScore W2970698888C122342681 @default.
- W2970698888 hasConceptScore W2970698888C127313418 @default.
- W2970698888 hasConceptScore W2970698888C144024400 @default.
- W2970698888 hasConceptScore W2970698888C149923435 @default.
- W2970698888 hasConceptScore W2970698888C150772632 @default.
- W2970698888 hasConceptScore W2970698888C159390177 @default.
- W2970698888 hasConceptScore W2970698888C161584116 @default.
- W2970698888 hasConceptScore W2970698888C187320778 @default.
- W2970698888 hasConceptScore W2970698888C18903297 @default.
- W2970698888 hasConceptScore W2970698888C2908647359 @default.
- W2970698888 hasConceptScore W2970698888C33923547 @default.
- W2970698888 hasConceptScore W2970698888C39432304 @default.
- W2970698888 hasConceptScore W2970698888C76177295 @default.
- W2970698888 hasConceptScore W2970698888C76886044 @default.
- W2970698888 hasConceptScore W2970698888C86803240 @default.
- W2970698888 hasConceptScore W2970698888C97256817 @default.
- W2970698888 hasLocation W29706988881 @default.
- W2970698888 hasOpenAccess W2970698888 @default.
- W2970698888 hasPrimaryLocation W29706988881 @default.
- W2970698888 hasRelatedWork W10559069 @default.
- W2970698888 hasRelatedWork W12873908 @default.
- W2970698888 hasRelatedWork W19021775 @default.
- W2970698888 hasRelatedWork W19693917 @default.
- W2970698888 hasRelatedWork W24375829 @default.
- W2970698888 hasRelatedWork W4019460 @default.
- W2970698888 hasRelatedWork W6207583 @default.
- W2970698888 hasRelatedWork W6377402 @default.
- W2970698888 hasRelatedWork W7434698 @default.
- W2970698888 hasRelatedWork W8791274 @default.
- W2970698888 isParatext "false" @default.
- W2970698888 isRetracted "false" @default.
- W2970698888 magId "2970698888" @default.
- W2970698888 workType "book-chapter" @default.