Matches in SemOpenAlex for { <https://semopenalex.org/work/W2970715074> ?p ?o ?g. }
- W2970715074 endingPage "13" @default.
- W2970715074 startingPage "1" @default.
- W2970715074 abstract "Core Ideas The adaptive GP‐based MCMC was efficient to estimate hydraulic parameters in soils. Accuracy of the estimated parameters was verified by simulating experimental results. These simulations revealed a significant effect of layered structure on soil water flow. Modeling water movement in heterogeneous soils, e.g., layered soils, is an essential but challenging task that requires accurate estimation of multiple sets of soil hydraulic parameters. Markov chain Monte Carlo (MCMC) is a popular but computationally expensive method for parameter estimation. An adaptive Gaussian process (GP)‐based MCMC method proposed in our previous work presents significant computational efficiency. Nevertheless, its performance was evaluated only for synthetic numerical cases and has not been experimentally validated. Furthermore, its applicability in estimating hydraulic parameters of layered soils is still unknown. In this study, we systematically evaluated the performance of the GP‐based MCMC method in estimating the layered soil hydraulic parameters through a water infiltration experiment. It was shown that the proposed method could provide reliable estimations that were very close to those given by the original‐model‐based MCMC but at a much lower computational cost. The simulated soil water dynamics using the estimated parameters revealed a significant effect of layered heterogeneity on water flow. The lower layer(s) with higher water suction may cause persistent unsaturated status of the upper layer(s) during infiltration." @default.
- W2970715074 created "2019-09-05" @default.
- W2970715074 creator A5009590736 @default.
- W2970715074 creator A5013122475 @default.
- W2970715074 creator A5016789587 @default.
- W2970715074 creator A5041949027 @default.
- W2970715074 creator A5049454123 @default.
- W2970715074 creator A5064548129 @default.
- W2970715074 creator A5065247476 @default.
- W2970715074 date "2019-01-01" @default.
- W2970715074 modified "2023-10-09" @default.
- W2970715074 title "Efficient Bayesian Inverse Modeling of Water Infiltration in Layered Soils" @default.
- W2970715074 cites W1517256496 @default.
- W2970715074 cites W1521626438 @default.
- W2970715074 cites W1528483814 @default.
- W2970715074 cites W1643664725 @default.
- W2970715074 cites W1725948164 @default.
- W2970715074 cites W1824063337 @default.
- W2970715074 cites W1923540232 @default.
- W2970715074 cites W1935773568 @default.
- W2970715074 cites W1974113566 @default.
- W2970715074 cites W1991135218 @default.
- W2970715074 cites W1994005439 @default.
- W2970715074 cites W1999027649 @default.
- W2970715074 cites W2007007319 @default.
- W2970715074 cites W2007912766 @default.
- W2970715074 cites W2012155512 @default.
- W2970715074 cites W2016466361 @default.
- W2970715074 cites W2018030410 @default.
- W2970715074 cites W2019730116 @default.
- W2970715074 cites W2020783104 @default.
- W2970715074 cites W2023474702 @default.
- W2970715074 cites W2043032632 @default.
- W2970715074 cites W2043120060 @default.
- W2970715074 cites W2055294775 @default.
- W2970715074 cites W2056310030 @default.
- W2970715074 cites W2066113849 @default.
- W2970715074 cites W2071286728 @default.
- W2970715074 cites W2082103717 @default.
- W2970715074 cites W2108135471 @default.
- W2970715074 cites W2124310429 @default.
- W2970715074 cites W2134831198 @default.
- W2970715074 cites W2137218207 @default.
- W2970715074 cites W2148534890 @default.
- W2970715074 cites W2153275142 @default.
- W2970715074 cites W2157757114 @default.
- W2970715074 cites W2162604832 @default.
- W2970715074 cites W2164382757 @default.
- W2970715074 cites W2167296714 @default.
- W2970715074 cites W2173126837 @default.
- W2970715074 cites W2191402158 @default.
- W2970715074 cites W2271294026 @default.
- W2970715074 cites W2280103703 @default.
- W2970715074 cites W2334360708 @default.
- W2970715074 cites W2339485884 @default.
- W2970715074 cites W2497530411 @default.
- W2970715074 cites W2497608075 @default.
- W2970715074 cites W2511904214 @default.
- W2970715074 cites W2561198534 @default.
- W2970715074 cites W2739507620 @default.
- W2970715074 cites W2792061775 @default.
- W2970715074 cites W2802918352 @default.
- W2970715074 cites W2803501421 @default.
- W2970715074 cites W4244985180 @default.
- W2970715074 cites W601087207 @default.
- W2970715074 doi "https://doi.org/10.2136/vzj2019.03.0029" @default.
- W2970715074 hasPublicationYear "2019" @default.
- W2970715074 type Work @default.
- W2970715074 sameAs 2970715074 @default.
- W2970715074 citedByCount "9" @default.
- W2970715074 countsByYear W29707150742020 @default.
- W2970715074 countsByYear W29707150742021 @default.
- W2970715074 countsByYear W29707150742022 @default.
- W2970715074 countsByYear W29707150742023 @default.
- W2970715074 crossrefType "journal-article" @default.
- W2970715074 hasAuthorship W2970715074A5009590736 @default.
- W2970715074 hasAuthorship W2970715074A5013122475 @default.
- W2970715074 hasAuthorship W2970715074A5016789587 @default.
- W2970715074 hasAuthorship W2970715074A5041949027 @default.
- W2970715074 hasAuthorship W2970715074A5049454123 @default.
- W2970715074 hasAuthorship W2970715074A5064548129 @default.
- W2970715074 hasAuthorship W2970715074A5065247476 @default.
- W2970715074 hasBestOaLocation W29707150741 @default.
- W2970715074 hasConcept C103272765 @default.
- W2970715074 hasConcept C105795698 @default.
- W2970715074 hasConcept C107673813 @default.
- W2970715074 hasConcept C111350023 @default.
- W2970715074 hasConcept C11413529 @default.
- W2970715074 hasConcept C126255220 @default.
- W2970715074 hasConcept C153400128 @default.
- W2970715074 hasConcept C159390177 @default.
- W2970715074 hasConcept C159750122 @default.
- W2970715074 hasConcept C159985019 @default.
- W2970715074 hasConcept C192562407 @default.
- W2970715074 hasConcept C19499675 @default.
- W2970715074 hasConcept C33923547 @default.
- W2970715074 hasConcept C39432304 @default.
- W2970715074 hasConcept C41008148 @default.