Matches in SemOpenAlex for { <https://semopenalex.org/work/W2970721844> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2970721844 abstract "Because precisions of different multiple-regression methods are different for the same samples, how to improve accuracy of forecasting has therefore generated wide interest. This paper attempted to improve precision of forecast by combining multiple linear regression and three artificial intelligence regressive models. In our study, a novel frame of model combination is proposed by fluctuating degree, complementarity and compatibility. Complementarity is available to judge which models can be combined to decease the errors and establish its sets. The assigned weights of each single model in complementary sets are calculated by fluctuating degree. Compatibility, superiors and inferiors of a combined model are evaluated by MAE, RMSE and MAPE. The empirical case of predicting electric demand demonstrated that the combined models based on fluctuating degree increase predicting precision of sample period and extrapolative forecast if there exists complement between different single-models." @default.
- W2970721844 created "2019-09-05" @default.
- W2970721844 creator A5020181842 @default.
- W2970721844 creator A5071911778 @default.
- W2970721844 creator A5082893819 @default.
- W2970721844 date "2019-08-01" @default.
- W2970721844 modified "2023-09-27" @default.
- W2970721844 title "Combined Method of Artificial Intelligence Regression Forecasting Models Under Fluctuating Errors" @default.
- W2970721844 cites W2009530495 @default.
- W2970721844 cites W2013311305 @default.
- W2970721844 cites W2043406008 @default.
- W2970721844 cites W2047159855 @default.
- W2970721844 cites W2068424727 @default.
- W2970721844 cites W2105012846 @default.
- W2970721844 cites W2110510303 @default.
- W2970721844 cites W2125438877 @default.
- W2970721844 cites W2143150569 @default.
- W2970721844 cites W2147017641 @default.
- W2970721844 cites W2147190688 @default.
- W2970721844 cites W2150809741 @default.
- W2970721844 cites W2154599668 @default.
- W2970721844 cites W2162157229 @default.
- W2970721844 cites W2560924972 @default.
- W2970721844 cites W2757248671 @default.
- W2970721844 cites W2774662878 @default.
- W2970721844 cites W2791841214 @default.
- W2970721844 cites W2887871875 @default.
- W2970721844 cites W2904656133 @default.
- W2970721844 cites W2906361816 @default.
- W2970721844 doi "https://doi.org/10.1142/s0218213019500180" @default.
- W2970721844 hasPublicationYear "2019" @default.
- W2970721844 type Work @default.
- W2970721844 sameAs 2970721844 @default.
- W2970721844 citedByCount "0" @default.
- W2970721844 crossrefType "journal-article" @default.
- W2970721844 hasAuthorship W2970721844A5020181842 @default.
- W2970721844 hasAuthorship W2970721844A5071911778 @default.
- W2970721844 hasAuthorship W2970721844A5082893819 @default.
- W2970721844 hasConcept C105795698 @default.
- W2970721844 hasConcept C119857082 @default.
- W2970721844 hasConcept C152877465 @default.
- W2970721844 hasConcept C154945302 @default.
- W2970721844 hasConcept C33923547 @default.
- W2970721844 hasConcept C41008148 @default.
- W2970721844 hasConcept C83546350 @default.
- W2970721844 hasConceptScore W2970721844C105795698 @default.
- W2970721844 hasConceptScore W2970721844C119857082 @default.
- W2970721844 hasConceptScore W2970721844C152877465 @default.
- W2970721844 hasConceptScore W2970721844C154945302 @default.
- W2970721844 hasConceptScore W2970721844C33923547 @default.
- W2970721844 hasConceptScore W2970721844C41008148 @default.
- W2970721844 hasConceptScore W2970721844C83546350 @default.
- W2970721844 hasLocation W29707218441 @default.
- W2970721844 hasOpenAccess W2970721844 @default.
- W2970721844 hasPrimaryLocation W29707218441 @default.
- W2970721844 hasRelatedWork W1586054314 @default.
- W2970721844 hasRelatedWork W1586190812 @default.
- W2970721844 hasRelatedWork W1970158984 @default.
- W2970721844 hasRelatedWork W1974891822 @default.
- W2970721844 hasRelatedWork W1999905715 @default.
- W2970721844 hasRelatedWork W2011818730 @default.
- W2970721844 hasRelatedWork W2035345857 @default.
- W2970721844 hasRelatedWork W2040395995 @default.
- W2970721844 hasRelatedWork W2073008274 @default.
- W2970721844 hasRelatedWork W2096462804 @default.
- W2970721844 hasRelatedWork W2182170487 @default.
- W2970721844 hasRelatedWork W2270639769 @default.
- W2970721844 hasRelatedWork W2285190357 @default.
- W2970721844 hasRelatedWork W2610314771 @default.
- W2970721844 hasRelatedWork W2930564639 @default.
- W2970721844 hasRelatedWork W2965459005 @default.
- W2970721844 hasRelatedWork W2969438120 @default.
- W2970721844 hasRelatedWork W3089462142 @default.
- W2970721844 hasRelatedWork W3144698994 @default.
- W2970721844 hasRelatedWork W2825878348 @default.
- W2970721844 isParatext "false" @default.
- W2970721844 isRetracted "false" @default.
- W2970721844 magId "2970721844" @default.
- W2970721844 workType "article" @default.