Matches in SemOpenAlex for { <https://semopenalex.org/work/W2970722445> ?p ?o ?g. }
- W2970722445 endingPage "215001" @default.
- W2970722445 startingPage "215001" @default.
- W2970722445 abstract "Tumour histological grade has prognostic implications in breast cancer. Tumour features in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and T2-weighted (T2W) imaging can provide related and complementary information in the analysis of breast lesions to improve MRI-based histological status prediction in breast cancer. A dataset of 167 patients with invasive ductal carcinoma (IDC) was assembled, consisting of 72 low/intermediate-grade and 95 high-grade cases with preoperative DCE-MRI and T2W images. The data cohort was separated into development (n = 111) and validation (n = 56) cohorts. Each tumour was segmented in the precontrast and the intermediate and last postcontrast DCE-MR images and was mapped to the tumour in the T2W images. Radiomic features, including texture, morphology, and histogram distribution features in the tumour image, were extracted for those image series. Features from the DCE-MR and T2W images were fused by a canonical correlation analysis (CCA)-based method. The support vector machine (SVM) classifiers were trained and tested on the development and validation cohorts, respectively. SVM-based recursive feature elimination (SVM-RFE) was adopted to identify the optimal features for prediction. The areas under the ROC curves (AUCs) for the T2W images and the DCE-MRI series of precontrast, intermediate and last postcontrast images were 0.750 ± 0.047, 0.749 ± 0.047, and 0.788 ± 0.045, respectively, for the development cohort and 0.715 ± 0.068, 0.704 ± 0.073, and 0.744 ± 0.067, respectively, for the validation cohort. After the CCA-based fusion of features from the DCE-MRI series and T2W images, the AUCs increased to 0.751 ± 0.065, 0.803 ± 0.0600 and 794 ± 0.060 in the validation cohort. Moreover, the method of fusing features between DCE-MRI and T2W images using CCA achieved better performance than the concatenation-based feature fusion or classifier fusion methods. Our results demonstrated that anatomical and functional MR images yield complementary information, and feature fusion of radiomic features by matrix transformation to optimize their correlations produced a classifier with improved performance for predicting the histological grade of IDC." @default.
- W2970722445 created "2019-09-05" @default.
- W2970722445 creator A5003415305 @default.
- W2970722445 creator A5006907190 @default.
- W2970722445 creator A5009607229 @default.
- W2970722445 creator A5014837150 @default.
- W2970722445 creator A5048665199 @default.
- W2970722445 creator A5051859711 @default.
- W2970722445 creator A5076042378 @default.
- W2970722445 date "2019-10-23" @default.
- W2970722445 modified "2023-10-16" @default.
- W2970722445 title "Integration of dynamic contrast-enhanced magnetic resonance imaging and T2-weighted imaging radiomic features by a canonical correlation analysis-based feature fusion method to predict histological grade in ductal breast carcinoma" @default.
- W2970722445 cites W1452513780 @default.
- W2970722445 cites W1828334443 @default.
- W2970722445 cites W1977738564 @default.
- W2970722445 cites W1978808954 @default.
- W2970722445 cites W1981728876 @default.
- W2970722445 cites W1983494692 @default.
- W2970722445 cites W2010871781 @default.
- W2970722445 cites W2012573772 @default.
- W2970722445 cites W2023057398 @default.
- W2970722445 cites W2028306844 @default.
- W2970722445 cites W2044465660 @default.
- W2970722445 cites W2049605801 @default.
- W2970722445 cites W2081691595 @default.
- W2970722445 cites W2087517982 @default.
- W2970722445 cites W2090595175 @default.
- W2970722445 cites W2115922446 @default.
- W2970722445 cites W2120396665 @default.
- W2970722445 cites W2128920415 @default.
- W2970722445 cites W2134444110 @default.
- W2970722445 cites W2137028370 @default.
- W2970722445 cites W2143426320 @default.
- W2970722445 cites W2144125659 @default.
- W2970722445 cites W2184968530 @default.
- W2970722445 cites W2252911892 @default.
- W2970722445 cites W2253429366 @default.
- W2970722445 cites W2405680777 @default.
- W2970722445 cites W2507492719 @default.
- W2970722445 cites W2537305086 @default.
- W2970722445 cites W2549173848 @default.
- W2970722445 cites W2586494677 @default.
- W2970722445 cites W2591992783 @default.
- W2970722445 cites W2599895745 @default.
- W2970722445 cites W2616461360 @default.
- W2970722445 cites W2726440677 @default.
- W2970722445 cites W2734865205 @default.
- W2970722445 cites W2747930650 @default.
- W2970722445 cites W2765868079 @default.
- W2970722445 cites W2766353760 @default.
- W2970722445 cites W2767947179 @default.
- W2970722445 cites W2772641544 @default.
- W2970722445 cites W2796545874 @default.
- W2970722445 cites W2900955936 @default.
- W2970722445 cites W2913682694 @default.
- W2970722445 doi "https://doi.org/10.1088/1361-6560/ab3fd3" @default.
- W2970722445 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31470420" @default.
- W2970722445 hasPublicationYear "2019" @default.
- W2970722445 type Work @default.
- W2970722445 sameAs 2970722445 @default.
- W2970722445 citedByCount "14" @default.
- W2970722445 countsByYear W29707224452020 @default.
- W2970722445 countsByYear W29707224452021 @default.
- W2970722445 countsByYear W29707224452022 @default.
- W2970722445 countsByYear W29707224452023 @default.
- W2970722445 crossrefType "journal-article" @default.
- W2970722445 hasAuthorship W2970722445A5003415305 @default.
- W2970722445 hasAuthorship W2970722445A5006907190 @default.
- W2970722445 hasAuthorship W2970722445A5009607229 @default.
- W2970722445 hasAuthorship W2970722445A5014837150 @default.
- W2970722445 hasAuthorship W2970722445A5048665199 @default.
- W2970722445 hasAuthorship W2970722445A5051859711 @default.
- W2970722445 hasAuthorship W2970722445A5076042378 @default.
- W2970722445 hasBestOaLocation W29707224452 @default.
- W2970722445 hasConcept C115961682 @default.
- W2970722445 hasConcept C117220453 @default.
- W2970722445 hasConcept C121608353 @default.
- W2970722445 hasConcept C12267149 @default.
- W2970722445 hasConcept C126322002 @default.
- W2970722445 hasConcept C126838900 @default.
- W2970722445 hasConcept C138885662 @default.
- W2970722445 hasConcept C143409427 @default.
- W2970722445 hasConcept C153180895 @default.
- W2970722445 hasConcept C154945302 @default.
- W2970722445 hasConcept C2524010 @default.
- W2970722445 hasConcept C2776401178 @default.
- W2970722445 hasConcept C2777111374 @default.
- W2970722445 hasConcept C2780472235 @default.
- W2970722445 hasConcept C2994142346 @default.
- W2970722445 hasConcept C33923547 @default.
- W2970722445 hasConcept C41008148 @default.
- W2970722445 hasConcept C41895202 @default.
- W2970722445 hasConcept C530470458 @default.
- W2970722445 hasConcept C53533937 @default.
- W2970722445 hasConcept C71924100 @default.
- W2970722445 hasConceptScore W2970722445C115961682 @default.
- W2970722445 hasConceptScore W2970722445C117220453 @default.
- W2970722445 hasConceptScore W2970722445C121608353 @default.