Matches in SemOpenAlex for { <https://semopenalex.org/work/W2970733329> ?p ?o ?g. }
- W2970733329 endingPage "849" @default.
- W2970733329 startingPage "849" @default.
- W2970733329 abstract "Measuring the complexity of time series provides an important indicator for characteristic analysis of nonlinear systems. The permutation entropy (PE) is widely used, but it still needs to be modified. In this paper, the PE algorithm is improved by introducing the concept of the network, and the network PE (NPE) is proposed. The connections are established based on both the patterns and weights of the reconstructed vectors. The complexity of different chaotic systems is analyzed. As with the PE algorithm, the NPE algorithm-based analysis results are also reliable for chaotic systems. Finally, the NPE is applied to estimate the complexity of EEG signals of normal healthy persons and epileptic patients. It is shown that the normal healthy persons have the largest NPE values, while the EEG signals of epileptic patients are lower during both seizure-free intervals and seizure activity. Hence, NPE could be used as an alternative to PE for the nonlinear characteristics of chaotic systems and EEG signal-based physiological and biomedical analysis." @default.
- W2970733329 created "2019-09-05" @default.
- W2970733329 creator A5018654135 @default.
- W2970733329 creator A5038554077 @default.
- W2970733329 creator A5075708894 @default.
- W2970733329 date "2019-08-30" @default.
- W2970733329 modified "2023-10-16" @default.
- W2970733329 title "Design of a Network Permutation Entropy and Its Applications for Chaotic Time Series and EEG Signals" @default.
- W2970733329 cites W1661671130 @default.
- W2970733329 cites W1680956864 @default.
- W2970733329 cites W1862394037 @default.
- W2970733329 cites W1970940224 @default.
- W2970733329 cites W1977985132 @default.
- W2970733329 cites W1978959816 @default.
- W2970733329 cites W1979148805 @default.
- W2970733329 cites W1995875735 @default.
- W2970733329 cites W2006803905 @default.
- W2970733329 cites W2014683958 @default.
- W2970733329 cites W2031377725 @default.
- W2970733329 cites W2053744708 @default.
- W2970733329 cites W2059851411 @default.
- W2970733329 cites W2077770566 @default.
- W2970733329 cites W2085790164 @default.
- W2970733329 cites W2105622546 @default.
- W2970733329 cites W2106706488 @default.
- W2970733329 cites W2203934738 @default.
- W2970733329 cites W2221893277 @default.
- W2970733329 cites W2275123641 @default.
- W2970733329 cites W2280719928 @default.
- W2970733329 cites W2286439238 @default.
- W2970733329 cites W2318640187 @default.
- W2970733329 cites W2322045482 @default.
- W2970733329 cites W2432419794 @default.
- W2970733329 cites W2482102801 @default.
- W2970733329 cites W2537943564 @default.
- W2970733329 cites W2590656077 @default.
- W2970733329 cites W2604113470 @default.
- W2970733329 cites W2606568760 @default.
- W2970733329 cites W2786551372 @default.
- W2970733329 cites W2792875701 @default.
- W2970733329 cites W2799962034 @default.
- W2970733329 cites W2884694231 @default.
- W2970733329 cites W2887706923 @default.
- W2970733329 cites W2890339783 @default.
- W2970733329 cites W2896012846 @default.
- W2970733329 cites W2896367831 @default.
- W2970733329 cites W2899125647 @default.
- W2970733329 cites W2899906797 @default.
- W2970733329 cites W2902284470 @default.
- W2970733329 cites W2907520573 @default.
- W2970733329 cites W2907604180 @default.
- W2970733329 cites W2908155418 @default.
- W2970733329 cites W2908578648 @default.
- W2970733329 cites W2921723074 @default.
- W2970733329 cites W2940776294 @default.
- W2970733329 cites W2952297931 @default.
- W2970733329 cites W3101426737 @default.
- W2970733329 cites W3124386509 @default.
- W2970733329 doi "https://doi.org/10.3390/e21090849" @default.
- W2970733329 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7515378" @default.
- W2970733329 hasPublicationYear "2019" @default.
- W2970733329 type Work @default.
- W2970733329 sameAs 2970733329 @default.
- W2970733329 citedByCount "12" @default.
- W2970733329 countsByYear W29707333292020 @default.
- W2970733329 countsByYear W29707333292021 @default.
- W2970733329 countsByYear W29707333292022 @default.
- W2970733329 countsByYear W29707333292023 @default.
- W2970733329 crossrefType "journal-article" @default.
- W2970733329 hasAuthorship W2970733329A5018654135 @default.
- W2970733329 hasAuthorship W2970733329A5038554077 @default.
- W2970733329 hasAuthorship W2970733329A5075708894 @default.
- W2970733329 hasBestOaLocation W29707333291 @default.
- W2970733329 hasConcept C106301342 @default.
- W2970733329 hasConcept C11413529 @default.
- W2970733329 hasConcept C118552586 @default.
- W2970733329 hasConcept C121332964 @default.
- W2970733329 hasConcept C153180895 @default.
- W2970733329 hasConcept C154945302 @default.
- W2970733329 hasConcept C158622935 @default.
- W2970733329 hasConcept C21308566 @default.
- W2970733329 hasConcept C24890656 @default.
- W2970733329 hasConcept C2777052490 @default.
- W2970733329 hasConcept C2987469083 @default.
- W2970733329 hasConcept C33923547 @default.
- W2970733329 hasConcept C41008148 @default.
- W2970733329 hasConcept C43456602 @default.
- W2970733329 hasConcept C522805319 @default.
- W2970733329 hasConcept C62520636 @default.
- W2970733329 hasConcept C71924100 @default.
- W2970733329 hasConcept C86859247 @default.
- W2970733329 hasConceptScore W2970733329C106301342 @default.
- W2970733329 hasConceptScore W2970733329C11413529 @default.
- W2970733329 hasConceptScore W2970733329C118552586 @default.
- W2970733329 hasConceptScore W2970733329C121332964 @default.
- W2970733329 hasConceptScore W2970733329C153180895 @default.
- W2970733329 hasConceptScore W2970733329C154945302 @default.
- W2970733329 hasConceptScore W2970733329C158622935 @default.