Matches in SemOpenAlex for { <https://semopenalex.org/work/W2970765526> ?p ?o ?g. }
- W2970765526 abstract "Abstract Traditional strategies for designing new materials with targeted property including methods such as trial and error, and experiences of domain experts, are time and cost consuming. In the present study, we propose a machine learning design system involving three features of machine learning modeling, compositional design and property prediction, which can accelerate the discovery of new materials. We demonstrate better efficiency of on a rapid compositional design of high-performance copper alloys with a targeted ultimate tensile strength of 600–950 MPa and an electrical conductivity of 50.0% international annealed copper standard. There exists a good consistency between the predicted and measured values for three alloys from literatures and two newly made alloys with designed compositions. Our results provide a new recipe to realize the property-oriented compositional design for high-performance complex alloys via machine learning." @default.
- W2970765526 created "2019-09-05" @default.
- W2970765526 creator A5004592920 @default.
- W2970765526 creator A5026902132 @default.
- W2970765526 creator A5047374324 @default.
- W2970765526 creator A5068555557 @default.
- W2970765526 date "2019-08-27" @default.
- W2970765526 modified "2023-10-10" @default.
- W2970765526 title "A property-oriented design strategy for high performance copper alloys via machine learning" @default.
- W2970765526 cites W1498436455 @default.
- W2970765526 cites W1970352630 @default.
- W2970765526 cites W1981453392 @default.
- W2970765526 cites W1983256516 @default.
- W2970765526 cites W1997284061 @default.
- W2970765526 cites W2003756933 @default.
- W2970765526 cites W2017778996 @default.
- W2970765526 cites W2026029341 @default.
- W2970765526 cites W2026477527 @default.
- W2970765526 cites W2031343845 @default.
- W2970765526 cites W2031869357 @default.
- W2970765526 cites W2060598523 @default.
- W2970765526 cites W2075485050 @default.
- W2970765526 cites W2088151396 @default.
- W2970765526 cites W2089117179 @default.
- W2970765526 cites W2105192472 @default.
- W2970765526 cites W2109205533 @default.
- W2970765526 cites W2126772808 @default.
- W2970765526 cites W2138359155 @default.
- W2970765526 cites W2152662638 @default.
- W2970765526 cites W2217451925 @default.
- W2970765526 cites W2288525845 @default.
- W2970765526 cites W2337110853 @default.
- W2970765526 cites W2347129741 @default.
- W2970765526 cites W2464725281 @default.
- W2970765526 cites W2474212304 @default.
- W2970765526 cites W2588766129 @default.
- W2970765526 cites W2744824343 @default.
- W2970765526 cites W2792799405 @default.
- W2970765526 cites W2801150834 @default.
- W2970765526 cites W2802589831 @default.
- W2970765526 cites W2804431384 @default.
- W2970765526 cites W2804548866 @default.
- W2970765526 cites W2806190817 @default.
- W2970765526 cites W2809083332 @default.
- W2970765526 cites W2855289976 @default.
- W2970765526 cites W2885739587 @default.
- W2970765526 cites W2890335631 @default.
- W2970765526 cites W2903564615 @default.
- W2970765526 cites W2907613710 @default.
- W2970765526 cites W2929785474 @default.
- W2970765526 cites W2963784900 @default.
- W2970765526 cites W336365082 @default.
- W2970765526 cites W846196537 @default.
- W2970765526 cites W1983122412 @default.
- W2970765526 doi "https://doi.org/10.1038/s41524-019-0227-7" @default.
- W2970765526 hasPublicationYear "2019" @default.
- W2970765526 type Work @default.
- W2970765526 sameAs 2970765526 @default.
- W2970765526 citedByCount "93" @default.
- W2970765526 countsByYear W29707655262020 @default.
- W2970765526 countsByYear W29707655262021 @default.
- W2970765526 countsByYear W29707655262022 @default.
- W2970765526 countsByYear W29707655262023 @default.
- W2970765526 crossrefType "journal-article" @default.
- W2970765526 hasAuthorship W2970765526A5004592920 @default.
- W2970765526 hasAuthorship W2970765526A5026902132 @default.
- W2970765526 hasAuthorship W2970765526A5047374324 @default.
- W2970765526 hasAuthorship W2970765526A5068555557 @default.
- W2970765526 hasBestOaLocation W29707655261 @default.
- W2970765526 hasConcept C111472728 @default.
- W2970765526 hasConcept C112950240 @default.
- W2970765526 hasConcept C119857082 @default.
- W2970765526 hasConcept C134306372 @default.
- W2970765526 hasConcept C138885662 @default.
- W2970765526 hasConcept C154945302 @default.
- W2970765526 hasConcept C189950617 @default.
- W2970765526 hasConcept C191897082 @default.
- W2970765526 hasConcept C192562407 @default.
- W2970765526 hasConcept C2776436953 @default.
- W2970765526 hasConcept C33923547 @default.
- W2970765526 hasConcept C36503486 @default.
- W2970765526 hasConcept C41008148 @default.
- W2970765526 hasConcept C544778455 @default.
- W2970765526 hasConceptScore W2970765526C111472728 @default.
- W2970765526 hasConceptScore W2970765526C112950240 @default.
- W2970765526 hasConceptScore W2970765526C119857082 @default.
- W2970765526 hasConceptScore W2970765526C134306372 @default.
- W2970765526 hasConceptScore W2970765526C138885662 @default.
- W2970765526 hasConceptScore W2970765526C154945302 @default.
- W2970765526 hasConceptScore W2970765526C189950617 @default.
- W2970765526 hasConceptScore W2970765526C191897082 @default.
- W2970765526 hasConceptScore W2970765526C192562407 @default.
- W2970765526 hasConceptScore W2970765526C2776436953 @default.
- W2970765526 hasConceptScore W2970765526C33923547 @default.
- W2970765526 hasConceptScore W2970765526C36503486 @default.
- W2970765526 hasConceptScore W2970765526C41008148 @default.
- W2970765526 hasConceptScore W2970765526C544778455 @default.
- W2970765526 hasFunder F4320321001 @default.
- W2970765526 hasIssue "1" @default.
- W2970765526 hasLocation W29707655261 @default.