Matches in SemOpenAlex for { <https://semopenalex.org/work/W2970836712> ?p ?o ?g. }
- W2970836712 endingPage "1973" @default.
- W2970836712 startingPage "1970" @default.
- W2970836712 abstract "Database and big data analytics systems such as Hadoop and Spark have a large number of configuration parameters that control memory distribution, I/O optimization, parallelism, and compression. Improper parameter settings can cause significant performance degradation and stability issues. However, regular users and even expert administrators struggle to understand and tune them to achieve good performance. In this tutorial, we review existing approaches on automatic parameter tuning for databases, Hadoop, and Spark, which we classify into six categories: rule-based, cost modeling, simulation-based, experiment-driven, machine learning, and adaptive tuning. We describe the foundations of different automatic parameter tuning algorithms and present pros and cons of each approach. We also highlight real-world applications and systems, and identify research challenges for handling cloud services, resource heterogeneity, and real-time analytics." @default.
- W2970836712 created "2019-09-05" @default.
- W2970836712 creator A5010833372 @default.
- W2970836712 creator A5018627557 @default.
- W2970836712 creator A5023095716 @default.
- W2970836712 creator A5059249605 @default.
- W2970836712 date "2019-08-01" @default.
- W2970836712 modified "2023-09-29" @default.
- W2970836712 title "Speedup your analytics" @default.
- W2970836712 cites W1970017388 @default.
- W2970836712 cites W2002131042 @default.
- W2970836712 cites W2010279913 @default.
- W2970836712 cites W2041783719 @default.
- W2970836712 cites W2059878010 @default.
- W2970836712 cites W2112474496 @default.
- W2970836712 cites W2114303224 @default.
- W2970836712 cites W2115258141 @default.
- W2970836712 cites W2122950698 @default.
- W2970836712 cites W2127789375 @default.
- W2970836712 cites W2187341577 @default.
- W2970836712 cites W2188062232 @default.
- W2970836712 cites W2294316975 @default.
- W2970836712 cites W2570373436 @default.
- W2970836712 cites W2613206411 @default.
- W2970836712 cites W2735019080 @default.
- W2970836712 cites W2884173354 @default.
- W2970836712 cites W2889252017 @default.
- W2970836712 cites W2898127566 @default.
- W2970836712 doi "https://doi.org/10.14778/3352063.3352112" @default.
- W2970836712 hasPublicationYear "2019" @default.
- W2970836712 type Work @default.
- W2970836712 sameAs 2970836712 @default.
- W2970836712 citedByCount "37" @default.
- W2970836712 countsByYear W29708367122019 @default.
- W2970836712 countsByYear W29708367122020 @default.
- W2970836712 countsByYear W29708367122021 @default.
- W2970836712 countsByYear W29708367122022 @default.
- W2970836712 countsByYear W29708367122023 @default.
- W2970836712 crossrefType "journal-article" @default.
- W2970836712 hasAuthorship W2970836712A5010833372 @default.
- W2970836712 hasAuthorship W2970836712A5018627557 @default.
- W2970836712 hasAuthorship W2970836712A5023095716 @default.
- W2970836712 hasAuthorship W2970836712A5059249605 @default.
- W2970836712 hasBestOaLocation W29708367122 @default.
- W2970836712 hasConcept C111919701 @default.
- W2970836712 hasConcept C112972136 @default.
- W2970836712 hasConcept C119857082 @default.
- W2970836712 hasConcept C124101348 @default.
- W2970836712 hasConcept C154945302 @default.
- W2970836712 hasConcept C173608175 @default.
- W2970836712 hasConcept C175801342 @default.
- W2970836712 hasConcept C199360897 @default.
- W2970836712 hasConcept C206345919 @default.
- W2970836712 hasConcept C2522767166 @default.
- W2970836712 hasConcept C2777138346 @default.
- W2970836712 hasConcept C2781215313 @default.
- W2970836712 hasConcept C31258907 @default.
- W2970836712 hasConcept C41008148 @default.
- W2970836712 hasConcept C68339613 @default.
- W2970836712 hasConcept C75684735 @default.
- W2970836712 hasConcept C77088390 @default.
- W2970836712 hasConcept C79158427 @default.
- W2970836712 hasConcept C79974875 @default.
- W2970836712 hasConceptScore W2970836712C111919701 @default.
- W2970836712 hasConceptScore W2970836712C112972136 @default.
- W2970836712 hasConceptScore W2970836712C119857082 @default.
- W2970836712 hasConceptScore W2970836712C124101348 @default.
- W2970836712 hasConceptScore W2970836712C154945302 @default.
- W2970836712 hasConceptScore W2970836712C173608175 @default.
- W2970836712 hasConceptScore W2970836712C175801342 @default.
- W2970836712 hasConceptScore W2970836712C199360897 @default.
- W2970836712 hasConceptScore W2970836712C206345919 @default.
- W2970836712 hasConceptScore W2970836712C2522767166 @default.
- W2970836712 hasConceptScore W2970836712C2777138346 @default.
- W2970836712 hasConceptScore W2970836712C2781215313 @default.
- W2970836712 hasConceptScore W2970836712C31258907 @default.
- W2970836712 hasConceptScore W2970836712C41008148 @default.
- W2970836712 hasConceptScore W2970836712C68339613 @default.
- W2970836712 hasConceptScore W2970836712C75684735 @default.
- W2970836712 hasConceptScore W2970836712C77088390 @default.
- W2970836712 hasConceptScore W2970836712C79158427 @default.
- W2970836712 hasConceptScore W2970836712C79974875 @default.
- W2970836712 hasIssue "12" @default.
- W2970836712 hasLocation W29708367121 @default.
- W2970836712 hasLocation W29708367122 @default.
- W2970836712 hasOpenAccess W2970836712 @default.
- W2970836712 hasPrimaryLocation W29708367121 @default.
- W2970836712 hasRelatedWork W1579710151 @default.
- W2970836712 hasRelatedWork W2777112960 @default.
- W2970836712 hasRelatedWork W3097243301 @default.
- W2970836712 hasRelatedWork W3117911048 @default.
- W2970836712 hasRelatedWork W3171568351 @default.
- W2970836712 hasRelatedWork W3180337491 @default.
- W2970836712 hasRelatedWork W4214869855 @default.
- W2970836712 hasRelatedWork W4225302769 @default.
- W2970836712 hasRelatedWork W4287605407 @default.
- W2970836712 hasRelatedWork W4298211017 @default.
- W2970836712 hasVolume "12" @default.