Matches in SemOpenAlex for { <https://semopenalex.org/work/W2970890648> ?p ?o ?g. }
- W2970890648 endingPage "504" @default.
- W2970890648 startingPage "494" @default.
- W2970890648 abstract "Abstract Despite much discussion about the utility of remote sensing for effective conservation, the inclusion of these technologies in species recovery plans remains largely anecdotal. We developed a modeling approach for the integration of local, spatially measured ecosystem functional dynamics into a species distribution modeling (SDM) framework in which other ecologically relevant factors are modeled separately at broad scales. To illustrate the approach, we incorporated intraseasonal water‐vegetation dynamics into a cross‐scale SDM for the Common Snipe ( Gallinago gallinago ), which is highly dependent on water and vegetation dynamics. The Common Snipe is an Iberian grassland waterbird characteristic of European agricultural meadows and a member of one of the most threatened bird guilds. The intraseasonal dynamics of water content of vegetation were measured using the standard deviation of the normalized difference water index time series computed from bimonthly images of the Sentinel‐2 satellite. The recovery plan for the Common Snipe in Galicia (northwestern Iberian Peninsula) provided an opportunity to apply our modeling framework. Model accuracy in predicting the species’ distribution at a regional scale (resulting from integration of downscaled climate projections with regional habitat–topographic suitability models) was very high (area under the curve [AUC] of 0.981 and Boyce's index of 0.971). Local water‐vegetation dynamic models, based exclusively on Sentinel‐2 imagery, were good predictors (AUC of 0.849 and Boyce's index of 0.976). The predictive power improved (AUC of 0.92 and Boyce's index of 0.98) when local model predictions were restricted to areas identified by the continental and regional models as priorities for conservation. Our models also performed well (AUC of 0.90 and Boyce's index of 0.93) when projected to updated water‐vegetation conditions. Our modeling framework enabled incorporation of key ecosystem processes closely related to water and carbon cycles while accounting for other factors ecologically relevant to endangered grassland waterbirds across different scales, allowed identification of priority areas for conservation, and provided an opportunity for cost‐effective recovery planning by monitoring management effectiveness from space." @default.
- W2970890648 created "2019-09-05" @default.
- W2970890648 creator A5046391038 @default.
- W2970890648 creator A5052241466 @default.
- W2970890648 creator A5066855738 @default.
- W2970890648 creator A5075738285 @default.
- W2970890648 date "2019-10-24" @default.
- W2970890648 modified "2023-09-27" @default.
- W2970890648 title "Integrating intraseasonal grassland dynamics in cross‐scale distribution modeling to support waterbird recovery plans" @default.
- W2970890648 cites W1526319989 @default.
- W2970890648 cites W1607124715 @default.
- W2970890648 cites W1720178141 @default.
- W2970890648 cites W1877408209 @default.
- W2970890648 cites W1891455834 @default.
- W2970890648 cites W1899259624 @default.
- W2970890648 cites W1978617972 @default.
- W2970890648 cites W1994727945 @default.
- W2970890648 cites W2025455835 @default.
- W2970890648 cites W2035537103 @default.
- W2970890648 cites W2041598242 @default.
- W2970890648 cites W2046118381 @default.
- W2970890648 cites W2051319183 @default.
- W2970890648 cites W2061049379 @default.
- W2970890648 cites W2081218447 @default.
- W2970890648 cites W2092141482 @default.
- W2970890648 cites W2092746709 @default.
- W2970890648 cites W2094357381 @default.
- W2970890648 cites W2097914129 @default.
- W2970890648 cites W2100533358 @default.
- W2970890648 cites W2104603799 @default.
- W2970890648 cites W2115268776 @default.
- W2970890648 cites W2127367934 @default.
- W2970890648 cites W2130695471 @default.
- W2970890648 cites W2153989276 @default.
- W2970890648 cites W2156632553 @default.
- W2970890648 cites W2165852425 @default.
- W2970890648 cites W2169678197 @default.
- W2970890648 cites W2303722937 @default.
- W2970890648 cites W2323436057 @default.
- W2970890648 cites W2324432264 @default.
- W2970890648 cites W2408046535 @default.
- W2970890648 cites W2508836246 @default.
- W2970890648 cites W2546017355 @default.
- W2970890648 cites W2552708329 @default.
- W2970890648 cites W2562763039 @default.
- W2970890648 cites W2565655618 @default.
- W2970890648 cites W2607468485 @default.
- W2970890648 cites W2754361865 @default.
- W2970890648 cites W2763811890 @default.
- W2970890648 cites W2808754910 @default.
- W2970890648 cites W2886137878 @default.
- W2970890648 cites W2893070658 @default.
- W2970890648 cites W2896939300 @default.
- W2970890648 doi "https://doi.org/10.1111/cobi.13415" @default.
- W2970890648 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31461173" @default.
- W2970890648 hasPublicationYear "2019" @default.
- W2970890648 type Work @default.
- W2970890648 sameAs 2970890648 @default.
- W2970890648 citedByCount "10" @default.
- W2970890648 countsByYear W29708906482019 @default.
- W2970890648 countsByYear W29708906482020 @default.
- W2970890648 countsByYear W29708906482021 @default.
- W2970890648 countsByYear W29708906482022 @default.
- W2970890648 countsByYear W29708906482023 @default.
- W2970890648 crossrefType "journal-article" @default.
- W2970890648 hasAuthorship W2970890648A5046391038 @default.
- W2970890648 hasAuthorship W2970890648A5052241466 @default.
- W2970890648 hasAuthorship W2970890648A5066855738 @default.
- W2970890648 hasAuthorship W2970890648A5075738285 @default.
- W2970890648 hasConcept C100970517 @default.
- W2970890648 hasConcept C105795698 @default.
- W2970890648 hasConcept C127313418 @default.
- W2970890648 hasConcept C132651083 @default.
- W2970890648 hasConcept C142724271 @default.
- W2970890648 hasConcept C1549246 @default.
- W2970890648 hasConcept C179345059 @default.
- W2970890648 hasConcept C185933670 @default.
- W2970890648 hasConcept C18903297 @default.
- W2970890648 hasConcept C194648359 @default.
- W2970890648 hasConcept C205649164 @default.
- W2970890648 hasConcept C24518262 @default.
- W2970890648 hasConcept C2775835988 @default.
- W2970890648 hasConcept C2776133958 @default.
- W2970890648 hasConcept C2778755073 @default.
- W2970890648 hasConcept C2780376076 @default.
- W2970890648 hasConcept C33923547 @default.
- W2970890648 hasConcept C39432304 @default.
- W2970890648 hasConcept C49204034 @default.
- W2970890648 hasConcept C58640448 @default.
- W2970890648 hasConcept C71924100 @default.
- W2970890648 hasConcept C78869512 @default.
- W2970890648 hasConcept C86803240 @default.
- W2970890648 hasConceptScore W2970890648C100970517 @default.
- W2970890648 hasConceptScore W2970890648C105795698 @default.
- W2970890648 hasConceptScore W2970890648C127313418 @default.
- W2970890648 hasConceptScore W2970890648C132651083 @default.
- W2970890648 hasConceptScore W2970890648C142724271 @default.
- W2970890648 hasConceptScore W2970890648C1549246 @default.