Matches in SemOpenAlex for { <https://semopenalex.org/work/W2970981630> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2970981630 endingPage "42" @default.
- W2970981630 startingPage "23" @default.
- W2970981630 abstract "Bayesian regularized artificial neural networks (BRANNs) are more robust than standard back-propagation nets and can reduce or eliminate the need for lengthy cross-validation. Bayesian regularization is a mathematical process that converts a nonlinear regression into a well-posed statistical problem in the manner of a ridge regression. The advantage of BRANNs is that the models are robust and the validation process, which scales as O(N2) in normal regression methods, such as back propagation, is unnecessary. These networks provide solutions to a number of problems that arise in QSAR modeling, such as choice of model, robustness of model, choice of validation set, size of validation effort, and optimization of network architecture. They are difficult to overtrain, since evidence procedures provide an objective Bayesian criterion for stopping training. They are also difficult to overfit, because the BRANN calculates and trains on a number of effective network parameters or weights, effectively turning off those that are not relevant. This effective number is usually considerably smaller than the number of weights in a standard fully connected back-propagation neural net. Automatic relevance determination (ARD) of the input variables can be used with BRANNs, and this allows the network to estimate the importance of each input. The ARD method ensures that irrelevant or highly correlated indices used in the modeling are neglected as well as showing which are the most important variables for modeling the activity data. This chapter outlines the equations that define the BRANN method plus a flowchart for producing a BRANN-QSAR model. Some results of the use of BRANNs on a number of data sets are illustrated and compared with other linear and nonlinear models." @default.
- W2970981630 created "2019-09-05" @default.
- W2970981630 creator A5046782981 @default.
- W2970981630 creator A5067075350 @default.
- W2970981630 date "2009-01-01" @default.
- W2970981630 modified "2023-10-01" @default.
- W2970981630 title "Bayesian Regularization of Neural Networks." @default.
- W2970981630 hasPublicationYear "2009" @default.
- W2970981630 type Work @default.
- W2970981630 sameAs 2970981630 @default.
- W2970981630 citedByCount "1" @default.
- W2970981630 countsByYear W29709816302017 @default.
- W2970981630 crossrefType "journal-article" @default.
- W2970981630 hasAuthorship W2970981630A5046782981 @default.
- W2970981630 hasAuthorship W2970981630A5067075350 @default.
- W2970981630 hasConcept C104317684 @default.
- W2970981630 hasConcept C105795698 @default.
- W2970981630 hasConcept C107673813 @default.
- W2970981630 hasConcept C119857082 @default.
- W2970981630 hasConcept C124101348 @default.
- W2970981630 hasConcept C154945302 @default.
- W2970981630 hasConcept C155032097 @default.
- W2970981630 hasConcept C185592680 @default.
- W2970981630 hasConcept C22019652 @default.
- W2970981630 hasConcept C33724603 @default.
- W2970981630 hasConcept C33923547 @default.
- W2970981630 hasConcept C41008148 @default.
- W2970981630 hasConcept C50644808 @default.
- W2970981630 hasConcept C55493867 @default.
- W2970981630 hasConcept C63479239 @default.
- W2970981630 hasConcept C83546350 @default.
- W2970981630 hasConceptScore W2970981630C104317684 @default.
- W2970981630 hasConceptScore W2970981630C105795698 @default.
- W2970981630 hasConceptScore W2970981630C107673813 @default.
- W2970981630 hasConceptScore W2970981630C119857082 @default.
- W2970981630 hasConceptScore W2970981630C124101348 @default.
- W2970981630 hasConceptScore W2970981630C154945302 @default.
- W2970981630 hasConceptScore W2970981630C155032097 @default.
- W2970981630 hasConceptScore W2970981630C185592680 @default.
- W2970981630 hasConceptScore W2970981630C22019652 @default.
- W2970981630 hasConceptScore W2970981630C33724603 @default.
- W2970981630 hasConceptScore W2970981630C33923547 @default.
- W2970981630 hasConceptScore W2970981630C41008148 @default.
- W2970981630 hasConceptScore W2970981630C50644808 @default.
- W2970981630 hasConceptScore W2970981630C55493867 @default.
- W2970981630 hasConceptScore W2970981630C63479239 @default.
- W2970981630 hasConceptScore W2970981630C83546350 @default.
- W2970981630 hasLocation W29709816301 @default.
- W2970981630 hasOpenAccess W2970981630 @default.
- W2970981630 hasPrimaryLocation W29709816301 @default.
- W2970981630 hasRelatedWork W129222777 @default.
- W2970981630 hasRelatedWork W1557483757 @default.
- W2970981630 hasRelatedWork W1566519172 @default.
- W2970981630 hasRelatedWork W164697790 @default.
- W2970981630 hasRelatedWork W169272495 @default.
- W2970981630 hasRelatedWork W2027243380 @default.
- W2970981630 hasRelatedWork W2098815293 @default.
- W2970981630 hasRelatedWork W2282514586 @default.
- W2970981630 hasRelatedWork W2533585993 @default.
- W2970981630 hasRelatedWork W2617670119 @default.
- W2970981630 hasRelatedWork W2743316100 @default.
- W2970981630 hasRelatedWork W2911546748 @default.
- W2970981630 hasRelatedWork W2986628990 @default.
- W2970981630 hasRelatedWork W2990223215 @default.
- W2970981630 hasRelatedWork W2991337921 @default.
- W2970981630 hasRelatedWork W3043093418 @default.
- W2970981630 hasRelatedWork W3125790184 @default.
- W2970981630 hasRelatedWork W3127046748 @default.
- W2970981630 hasRelatedWork W3127876718 @default.
- W2970981630 hasRelatedWork W69316309 @default.
- W2970981630 isParatext "false" @default.
- W2970981630 isRetracted "false" @default.
- W2970981630 magId "2970981630" @default.
- W2970981630 workType "article" @default.