Matches in SemOpenAlex for { <https://semopenalex.org/work/W2971014768> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2971014768 abstract "Aspect-based sentiment analysis (ABSA) has attracted increasing attention recently due to its broad applications. In existing ABSA datasets, most sentences contain only one aspect or multiple aspects with the same sentiment polarity, which makes ABSA task degenerate to sentence-level sentiment analysis. In this paper, we present a new large-scale Multi-Aspect Multi-Sentiment (MAMS) dataset, in which each sentence contains at least two different aspects with different sentiment polarities. The release of this dataset would push forward the research in this field. In addition, we propose simple yet effective CapsNet and CapsNet-BERT models which combine the strengths of recent NLP advances. Experiments on our new dataset show that the proposed model significantly outperforms the state-of-the-art baseline methods" @default.
- W2971014768 created "2019-09-05" @default.
- W2971014768 creator A5010738468 @default.
- W2971014768 creator A5015872882 @default.
- W2971014768 creator A5026719663 @default.
- W2971014768 creator A5068007462 @default.
- W2971014768 creator A5083369457 @default.
- W2971014768 date "2019-01-01" @default.
- W2971014768 modified "2023-10-16" @default.
- W2971014768 title "A Challenge Dataset and Effective Models for Aspect-Based Sentiment Analysis" @default.
- W2971014768 cites W2106477703 @default.
- W2971014768 cites W2157331557 @default.
- W2971014768 cites W2194775991 @default.
- W2971014768 cites W2250539671 @default.
- W2971014768 cites W2251124635 @default.
- W2971014768 cites W2251648804 @default.
- W2971014768 cites W2562607067 @default.
- W2971014768 cites W2904893967 @default.
- W2971014768 cites W2916076862 @default.
- W2971014768 cites W2949029099 @default.
- W2971014768 cites W2962808042 @default.
- W2971014768 cites W2963168371 @default.
- W2971014768 cites W2963341956 @default.
- W2971014768 cites W2963403868 @default.
- W2971014768 cites W2963428430 @default.
- W2971014768 cites W2963703618 @default.
- W2971014768 cites W2963909901 @default.
- W2971014768 cites W2964121744 @default.
- W2971014768 cites W2964164368 @default.
- W2971014768 doi "https://doi.org/10.18653/v1/d19-1654" @default.
- W2971014768 hasPublicationYear "2019" @default.
- W2971014768 type Work @default.
- W2971014768 sameAs 2971014768 @default.
- W2971014768 citedByCount "135" @default.
- W2971014768 countsByYear W29710147682019 @default.
- W2971014768 countsByYear W29710147682020 @default.
- W2971014768 countsByYear W29710147682021 @default.
- W2971014768 countsByYear W29710147682022 @default.
- W2971014768 countsByYear W29710147682023 @default.
- W2971014768 crossrefType "proceedings-article" @default.
- W2971014768 hasAuthorship W2971014768A5010738468 @default.
- W2971014768 hasAuthorship W2971014768A5015872882 @default.
- W2971014768 hasAuthorship W2971014768A5026719663 @default.
- W2971014768 hasAuthorship W2971014768A5068007462 @default.
- W2971014768 hasAuthorship W2971014768A5083369457 @default.
- W2971014768 hasBestOaLocation W29710147681 @default.
- W2971014768 hasConcept C108583219 @default.
- W2971014768 hasConcept C119857082 @default.
- W2971014768 hasConcept C1491633281 @default.
- W2971014768 hasConcept C154945302 @default.
- W2971014768 hasConcept C162324750 @default.
- W2971014768 hasConcept C187736073 @default.
- W2971014768 hasConcept C202444582 @default.
- W2971014768 hasConcept C204321447 @default.
- W2971014768 hasConcept C2777361361 @default.
- W2971014768 hasConcept C2777530160 @default.
- W2971014768 hasConcept C2780451532 @default.
- W2971014768 hasConcept C33923547 @default.
- W2971014768 hasConcept C41008148 @default.
- W2971014768 hasConcept C54355233 @default.
- W2971014768 hasConcept C66402592 @default.
- W2971014768 hasConcept C86803240 @default.
- W2971014768 hasConcept C9652623 @default.
- W2971014768 hasConceptScore W2971014768C108583219 @default.
- W2971014768 hasConceptScore W2971014768C119857082 @default.
- W2971014768 hasConceptScore W2971014768C1491633281 @default.
- W2971014768 hasConceptScore W2971014768C154945302 @default.
- W2971014768 hasConceptScore W2971014768C162324750 @default.
- W2971014768 hasConceptScore W2971014768C187736073 @default.
- W2971014768 hasConceptScore W2971014768C202444582 @default.
- W2971014768 hasConceptScore W2971014768C204321447 @default.
- W2971014768 hasConceptScore W2971014768C2777361361 @default.
- W2971014768 hasConceptScore W2971014768C2777530160 @default.
- W2971014768 hasConceptScore W2971014768C2780451532 @default.
- W2971014768 hasConceptScore W2971014768C33923547 @default.
- W2971014768 hasConceptScore W2971014768C41008148 @default.
- W2971014768 hasConceptScore W2971014768C54355233 @default.
- W2971014768 hasConceptScore W2971014768C66402592 @default.
- W2971014768 hasConceptScore W2971014768C86803240 @default.
- W2971014768 hasConceptScore W2971014768C9652623 @default.
- W2971014768 hasLocation W29710147681 @default.
- W2971014768 hasOpenAccess W2971014768 @default.
- W2971014768 hasPrimaryLocation W29710147681 @default.
- W2971014768 hasRelatedWork W2012503034 @default.
- W2971014768 hasRelatedWork W2059035017 @default.
- W2971014768 hasRelatedWork W2294500472 @default.
- W2971014768 hasRelatedWork W2296006172 @default.
- W2971014768 hasRelatedWork W2923978210 @default.
- W2971014768 hasRelatedWork W3103618606 @default.
- W2971014768 hasRelatedWork W3170692621 @default.
- W2971014768 hasRelatedWork W3192794374 @default.
- W2971014768 hasRelatedWork W3209984204 @default.
- W2971014768 hasRelatedWork W4221152594 @default.
- W2971014768 isParatext "false" @default.
- W2971014768 isRetracted "false" @default.
- W2971014768 magId "2971014768" @default.
- W2971014768 workType "article" @default.